
92

93

 ISSN2321-2152www.ijmece .com

Vol 08, Issuse.4 Dec 2021

Infection Detection in Health-Related Sensor Data Using Machine

Learning

MADHUSHREE KUANR

Abstract—

Small modifications in the virus code are easily detected by conventional signature-based malware detection

techniques. The majority of malware programs nowadays are modifications of other applications. They thus

have various signatures yet have certain similar patterns. Instead than only seeing slight changes, it's

important to recognize the virus pattern in order to protect sensor data. However, we suggest a quick

detection technique to find patterns in the code using machine learning-based approaches in order to quickly

discover these health sensor data in malware programs. To evaluate the code using health sensor data,

XGBoost, LightGBM, and Random Forests will be specifically used. The codes are either supplied into them

as single bytes or tokens or as sequences of bytes or tokens (e.g. 1-, 2-, 3-, or 4- grams).

I. INTRODUCTION

All types of sensors are being used to gather health

sensor data as we enter the Internet of Things Era.

Eventually, malicious software or programs that are

hidden in health sensor data and are regarded as

intrusions in the target host computer are executed in

accordance with a hacker's predetermined logic.

Computer viruses, worms, Trojan horses, bonnets,

ransom ware, and other harmful codes fall under the

category of hazardous codes in health sensor data [1].

Malware assaults may harm computer networks and

systems while stealing sensitive data and core data.

One of the biggest risks to modern computer security

is it [2, 3]. There are typically two kinds of malware

analysis techniques. [4-7]. (1) Static analysis is often

carried out by examining each component of a binary

file and displaying its many resources without

actually using it. A disassemble may also be used to

disassemble (or redesign) binary files (such as IDA).

Humans are able to read and comprehend assembly

code, which may sometimes be converted from

machinecode

.

ASSISTANT PROFESSOR, Mtech,Ph.D

Department of CSE

Gandhi Institute for Technology,Bhubaneswar.

94

Malware analysts are able to decipher assembly

instructions and see the program's intended behavior.

Some contemporary malware is developed utilizing

unclear methods to thwart this kind of examination,

such introducing grammatical flaws in the code.

Although these mistakes might be perplexing to the

disassemble, they are nonetheless functional during

execution. (2) Dynamic analysis is carried out by

analyzing the behavior of the virus while it is running

on the host 1. The Qatar National Research Fund, a

subsidiary of the Qatar Foundation,

provided funding for this study under Grant NPRP10-

1205-160012.

The writers alone bear full responsibility for the

assertions stated in this article. System. Modern

malware may employ a number of misleading

strategies to evade dynamic analysis, such as testing

active debuggers or virtual environments, delaying

the execution of harmful payloads, or requesting

interactive user input [8–10].

In this work, static code analysis is the major topic.

The primary feature matching or broad-spectrum

signature scanning techniques used in early static

code analysis. Broad-spectrum scanning examines

the feature code and employs masked bytes to

separate the portions that need to be compared from

those that do not, whereas feature matching simply

uses feature string matching to complete the

detection. The hysteresis issue is critical since both

approaches must get malware samples and extract

characteristics before they can be identified. In

addition, when malware technology advances, the

number of malware variants suddenly rises and

malware starts to change during transmission in an

effort to escape being detected and eliminated. It is

challenging to extract a fragment of code to serve as

a virus signature since the form of the variations

varies greatly.

II. REALTED WORK

Given this circumstance, it makes sense to use

machine learning-based techniques that analyze

unfamiliar binary code using static code analysis

while drawing on prior experience and expertise to

automatically categorize malware. In accordance with

the instructions, this work makes use of relevant

machine learning-based technologies and investigates

how to apply this strategy to the categorization of

malware [11–14].

Malware detection essentially boils down to a

classification issue that determines whether a sample

is genuine software or malicious software. Therefore,

the key processes of a machine learning algorithm

drive host malware detection technology, and the

primary research steps of this study are as follows:

Gather enough samples of both genuine software and

malicious code.

Process the sample's data effectively and extract the

characteristics. Select the classification's primary

characteristics further.

By combining the training with machine learning

techniques, a categorization model is created.

Using the learned classification model, find unknown

samples. Finding the most useful characteristics and

models for this practical endeavor is the final

objective. The primary research issues and

fundamental concepts are presented in this chapter.

What people typically utilize in this field, how to get

experimental data, and what we do with them in this

study are all described below.

95

A detection model built on top of machine learning

techniques and the model we use in the tests,

followed by a summary and analysis of the outcomes.

III. MALWARE CODE ANALYSIS

A. Malware Sample Collection

The foundation for code analysis is the efficient

acquisition of malware samples. The classification

model may perform more accurate detection tasks

when integrated with machine learning methods, but

only after proper training using the sample data [38,

40]. Malware samples may be obtained in a variety of

methods.

 1) User-side sampling: The majority of anti-virus

software providers use this as their primary

technique. Antivirus software users that transmit

malware samples to providers. This strategy performs

well in real-time, but it is challenging to get the data

directly since security providers often decide not to

release their data in an open manner.

2) Open network databases; examples are VX

Heavens, Open Malware, and Virus Bulletin. The

open online sample systems are currently constrained

in comparison to the pace at which malicious code is

updated, and the websites have issues such being

subject to assaults. Therefore, the development of a

malware sharing mechanism has shown its

significance more and more.

3) Additional technological methods a particularly

fragile system is created to entice attackers to attack

in order for the system to get malware samples via

collection utilizing a capture tool like a honey pot

(such as the Nepenthes honey pot). Additionally,

certain Trojans and Internet backdoors may be

acquired through spam traps or security discussion

forums. The size of the capture sample for the

aforementioned technological techniques is limited,

however. Fortunately, Secure Age provided the raw

data for this research, which we can utilize directly

without further processing. Then, with regard to

feature extraction, it is often essential to first

disassemble the code in order to extract the static

features of the malware. IDAPro, Hopper, OllyDbg,

and other popular tools are included.

One of them, IDA Pro, is an interactive disassemble

that can produce malware assembly code in addition

to doing other tasks including locating functional

blocks, obtaining input functions, and outlining

functional flow diagrams. These are likewise used in

this essay.

B. Feature Selection

Three primary categories of characteristics are as

follows:

1) The majority of sample features are extracted

using sequence-based feature types. The N-gram is a

representative piece of technology. The N-gram,

where N is the length of a feature sequence,

presupposes that a word's N instances are only

connected to its N1 preceding instances. The N-gram

model breaks a phrase into LN+1 feature sequences

using sliding windows if the phrase set has length L.

For instance, when a 3-gram is applied to the word

set PUSH SUB SAL, SUB SAL AND, SAL AND

DIV, AND DIV LDS, and DIV LDS POP (L=7 at

this time), five distinctive sequences are produced:

PUSH SUB SAL, SAL AND DIV, AND DIV LDS,

and DIV LDS POP. Each string consists of three

words.

In order to successfully identify malware in the

choice of lemmas, Abou-Assaleh [15] first proposed

a feature extraction framework based on byte

sequences and applied the K closest neighbor

classification approach. Opcodes are employed to

choose words in a unique manner. Henchiri published

96

an unique method for extracting n-gram

characteristics [16]. We can better define malware by

extracting opcode features. According to Moskovitch

[17], who examined five different classifiers based on

opcode sequences using a test set of more than 3 104

files, the detection accuracy for malware was as high

as 99%. to increase classification precision in the

presence of incomplete and noisy data. Abualsaud

[39] published a new noise-aware signal combination

(NSC) ensemble classifier. Using feature extraction,

NSC Five different types of characteristics are

selected for this paper:

The byte count function. As far as we are aware, a

computer's files are entirely composed of binary and

hexadecimal code. It makes sense to count the

numbers in raw exe files. The first 4096 number

strings of exe files are obtained using the PE header

as shown below.

Fig. 1. Number string of exe files.

This is a series of strings from 0-255, and a label 0/1

is at the beginning. We count the number of 0-255s in

all strings and make labs files using them.

Fig. 2. Labs files

A labs file is a common data format in machine

learning. Each line in it starts with a label and some

data such as x:y, which means that dimension x’s

value is y. In the labs, a label of 0 represents malware

and 1 represents safe software, while x: y means that

in this exe file, the number x occurs y times.

C. Model Selection

The characteristic data that are obtained by the static

and dynamic analysis of the malicious code can be

used as inputs into the machine learning algorithm

training in order to generate a corresponding

malicious code classifier.

The Naive Bays is a simple method to build a

classifier. In many practical applications, the Naive

Bayesian model

Parameter estimation uses the maximum likelihood

estimation method. In other words, the Naïve

Bayesian model

Can work without the Bayesian probability or any

Bayesian model [39].

The KNN algorithm is one of the most intuitive

machine learning algorithms. One of the KNN's

strengths is to support "enhanced learning," where

new samples of the training set can be trained as

being incremental without having to retrain the model

[38, 40].

The SVM algorithm tries to find a linear hyper plane

for binary classification. The SVM and KNN

algorithms are

More efficient when dealing with smaller samples,

but as the data sets increase in size, the SVM and

KNN become

Computationally expensive [39].

Random Forests are a kind of bagging model, which

is a joint prediction model that is composed of

multiple decision trees. If the model we train in the

process is a decision tree, then we will get a Random

Forest. For a wide variety of data, it can produce

high-accuracy classifiers. It can handle a large

number of input variables. It can assess the

97

importance of variables when determining categories.

Additionally, the learning process is very fast.

The naïve Bayes, SVM, KNN [39] and Random

Forest [25] are 4 traditional learning models. There

are also some new machine learning models that

were invented in recent years. XGBoost is an open-

source software library that provides the gradient

boosting framework for C++, Java, Python, R, and

Julia. The biggest feature of XGBoost is that it can

automatically use the CPU's multithreading to

improve the algorithm’s accuracy. It has gained much

popularity and attention recently as it was the

algorithm of choice for many winning teams of a

number of machine learning competitions.

(Wikipedia) CART (regression tree) is the most basic

part of XGBoost. It builds a classification tree based

on training characteristics and training data, and

determines the prediction result of each

Piece of data. The construction of the tree uses the

gin index to calculate the gain and select the features

of the tree. The formula of the gin index is given as

formula (1), and the gain formula of the gin index is

given as formula (2)

Pk represents type k’s probability in dataset D, and a

large K means a large number of types in D.

D represents the entire dataset; D1 and D2 represent

the datasets with feature A in the dataset and the

datasets with

Feature non-A, respectively; and Gini(D1) denotes

the gini index of the datasets with feature A.

In XGBoost [19], the objective function is

approximated by a second-order Taylor expansion

and the time complexity significantly decreases. It

also defines the complexity of the tree and applies it

to the target function, which can dynamic grow the

tree through splitting and segment evaluations at the

split nodes. These are the advantage of XGBoost that

traditional boosting algorithms do not have.

LightGBM [20] is another kind of boosting model. It

is a fast, distributed, high performance gradient

framework based on decision tree algorithms, which

is used for ranking, classification and many other

machine learning tasks. It is under the umbrella of the

DMTK project of Microsoft. The shortcomings of

XGBoost are as follows: (1) each iteration requires

traversing the entire training data multiple times. (2)

When traversing each split node, a split-gain

calculation is needed, which consumes a lot of time

too. In this paper, the models we use are XGBoost,

LightGBM

And Random Forest. We tested the SVM (Support

vector machine) before, but the running speed is too

slow and the

Performance is not good enough, and so we

ultimately decided to use these 3 models.

IV. EXPERIMENTAL ANALYSIS

In order to illustrate the performance differences

between the models, between the features and even

between different dimensions in the same feature, we

extract 27 subdivided features, including the byte

count (256d, where d represents dimensions), opcode

1-gram (150d), opcode 2-4-grams (150, 450, and

750d), daf 1-gram (150d), daf 2-4-grams (150, 450,

and 750d), segment (150, 450, and 750d) and dll

(150, 450, and 750d), and conduct 81 experiments

(we run each feature’s libsvm file in XGBoost,

LightGBM and Random Forest). The training set is

from Secure Age’s malware sample from 04/2017

98

and the test set is the sample from 05/2017. The

experiments include 4 parts:

1. Testing the effect of each feature and model in this

practical dataset.

2. Testing which model performs the best for a

certain feature.

3. Testing which feature performs the best on the

whole.

4. Testing which dimension leads to the best results

with respect to a certain feature.

For opcode and daf features, we assess the

evolutionary trend from 1-gram to 4-grams and

whether opcode or daf is better. For a certain model,

we also test which kind of feature that model prefers

to use.

Three measures are adopted to evaluate them.

1. AUC (area under the curve): If a positive sample

and a negative sample are randomly selected, the

AUC gives the

Probability that the classifier correctly gives the

positive sample a higher score than the negative

sample [21]. The

Higher the AUC value is, the stronger the sorting

ability of the model [22].

2. Precision and Recall: In this dataset, we define the

number of positive samples as P and the number of

negative samples as N (malware or legitimate

software). In the first case, for a sample, if the

prediction is positive and it is actually positive, we

call it a true positive (TP). In the second case, if the

prediction is positive and the actual value is negative,

we call it a false positive (FP). In the third case, if the

prediction is negative and the actual value is positive,

it is called a false negative (FN). In the last case, if

the prediction is negative and the actual value is

negative, it is called a true negative (TN) [39, 40].

Each sample can only belong to one of these four

cases. There is no other possibility. Then, we have

the following: P=TP+FN, N=TN+FP, Precision-

P=TP/TP+FP, Precision-N=TN/TN+FN, Recall-

P=TP/P, and Recall -N=TN/N. Recall reflects the

ability of the classification model to identify P/N

samples. The higher the recall is, the stronger the

model's ability to identify P/N samples. The precision

[23] [41, 42] reflects the ability of the model to

discriminate N/P samples.

3. Accuracy: TP+TN/P+N. It reflects the accuracy of

the classifier on the whole, that is, the proportion of

correct

Predictions. First, compare the three models from the

scale of features. The comparison for the byte count

feature is shown in Fig. 4.

Byte count has only one dimension, 256, since there

are 256 possible numbers in the byte count (0-255).

LightGBM

Performs the best for byte count. The comparison for

the instruction 1-4-grams features is shown in Fig. 5.

For the

Instruction 1-gram, there are only 160+ kinds of

instructions in the X86 assembly language, and so it

has only 1 dimensions:

150. For the 2-4-grams, we give it the 3 dimensions

of 150, 450, and 750, which mean that we count the

150, 450, and 750 most common instructions,

respectively. We also test 3 dimensions in the

remaining features except for daf 1-gram since we

want to compare it with the instruction 1-gram.

99

Fig. 4. Comparison for the byte count feature

Fig. 5. Comparison for instruction 1-4-grams features

for 1-gram and 2-grams, XGBoost is a little better

than LightGBM, while for 3-grams and 4-grams, the

result is just the opposite. However, in regard to the

dimensions, the conclusion is the same, regardless of

the model. 750d is better than 450d, and 450d is

better than 150d. If we compare the best accuracy of

1-4-grams, we can find that 2-grams >1- gram >3-

grams >4-grams. The comparison for the daf 1-4-

grams features is shown in Fig. 6.

Fig. 6. Comparison for daf 1-4-grams features

LightGBM is always the best in 1-4-grams.

Furthermore,

We have same dimensional comparison result of

750d>450d>150d and the almost same result for the

different grams of 1-gram>2-grams>3-grams>4-

grams. Compared with the simple opcode feature

[24], the opcode is better than the daf feature by

2.5%. The comparison for the segment feature is

shown in Fig. 7.

Fig. 7. Comparison for segment feature

LightGBM is the best in this feature, while to my

surprise, 450d is better than 750d and 750d is better

than 150d. The comparison for the Dll function

feature is shown in Fig. 8.

Fig. 8. Comparison for Dll function feature

In this feature, all of the 3 models do not perform

well. If we must evaluate them, LightGBM is still the

best, and

750d>450d>150d.

100

Fig. 9. XGBoost comparison

Second, we compare the three models from the scale

of models. The comparison for XGBoost, LightGBM

and Random Forest [25] are shown in Fig. 9, Fig. 10,

and Fig. 11 respectively.

As is shown, XGBoost and LightGBM prefer the

750d feature while Random Forest prefers 450d

feature. They all prefer the Sequence-based feature

types rather than the API Call-based feature types.

Fig. 10. LightGBM Comparation Fig. 11. Random

Forest Comparison In general, we can say that

opcode1-gram, 2-grams, daf 1- gram and segment

count are the 4 most effective features. For the grams,

1 and 2 are better than 3 and 4, perhaps because 1-

gram and 2-grams have more identifiable grammar

[26]. For the dimension, the greater the dimension is,

the better the result but the Random Forest may not

be able to deal with too much noise in high

dimensions, while XGBoost and LightGBM perform

well. For the models, Random Forest is significantly

worse than the other 2 models. In some features,

XGBoost has better performance, while for most

features, LightGBM is better. LightGBM is indeed an

optimized version of XGBoost.

CONCLUSION

The use of machine learning techniques in the

identification of dangerous code has been

increasingly appreciated by the academic community

and various security companies due to the complexity

of malware codes hidden in health sensor data [27-

30, 38, 40]. This study, which is founded on the idea

of machine learning, integrates the benefits of many

models [31–33, 36–37] and addresses static code

analysis using various machine learning methods and

code attributes. For the design and implementation of

malware detection technologies for machine learning

in the future, this study may serve as a useful

reference [34]. This section is still in the developing

stage, nevertheless. Below is a list of all the duties

and difficulties that still need to be accomplished.

1. A lack of useful data: To create an efficient model,

a machine learning algorithm often has to be trained

on tens of thousands of data points [35]. These

fundamental data must often be acquired manually,

and the speed cannot be guaranteed [36, 37].

2. Interpretable outcomes are lacking: Internally, this

is due to the fact that we just know that numerous

features are beneficial without understanding why.

The biggest hurdle in the future will be how this issue

is interpreted.

REFERENCES

[1] L. Wu, X. Du, W. Wang, B. Lin, “An Out-of-

band Authentication Scheme for Internet of Things

Using Block chain Technology,” in Proc. of IEEE

ICNC 2018, Maui, Hawaii, USA, March 2018.

101

[2] M. Sheen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and

J. Hub, “Cloud-Based Approximate Constrained

Shortest Distance Queries over Encrypted Graphs

with Privacy Protection”, IEEE Transactions on

Information Forensics & Security, Volume: 13, Issue:

4, Page(s): 940 – 953, April 2018, DOI:

10.1109/TIFS.2017.2774451.

[3] P. Dong, X. Du, H. Zhang, and T. CSU, “A

Detection Method for a Novel Dodos Attack against

SDN Controllers by Vast New Low-Traffic Flows,”

in Proc. of the IEEE ICC 2016, Kuala Lumpur,

Malaysia, 2016.

[4] Z. Tian, Y. Cui, L. An, S. Su, X. Yin, L. Yin and

X. Cui. A Real-Time Correlation of Host-Level

Events in Cyber Range Service for Smart Campus.

IEEE Access. vol. 6, pp. 35355-35364, 2018. DOI:

10.1109/ACCESS.2018.2846590.

[5] Q. Tan, Y. Gao, J. Shi, X. Wang, B. Fang, and Z.

Tian. Towards a Comprehensive Insight into the

Eclipse Attacks of Tor Hidden Services. IEEE

Internet of Things Journal. 2018. DOI:

10.1109/JIOT.2018.2846624.

[6] Z. Wang, C. Liu, J. Qiu, Z. Tian, C., Y. Dong, S.

Su Automatically Trace back RDP-based Targeted

Ransom ware Attacks. Wireless Communications and

Mobile Computing. 2018.

https://doi.org/10.1155/2018/7943586.

[7] L. Xiao, Y. Li, X. Huang, X. Du, “Cloud-based

Malware Detection Game for Mobile Devices with

Offloading”, IEEE Transactions on Mobile

Computing, Volume: 16, Issue: 10, Pages: 2742 –

2750, Oct. 2017. DOI: 10.1109/TMC.2017.2687918.

[8] https://en.wikipedia.org/wiki/Malware_analysis

[9] Z. Tian, W. Shi, Y. Wang, C. Zhu, X. Du, et al.,

“Real-Time Lateral Movement Detection Based on

Evidence Reasoning Network for Edge Computing

Environment”, IEEE Transactions on Industrial

Informatics, Volume: 15, Issue: 7, Page(s): 4285 –

4294, March 2019.

[10] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, M.

Guizani, “Security in mobile edge caching with

reinforcement learning”, IEEE Wireless

Communications Volume: 25, Issue: 3, pp. 116-122,

June 2018, DOI: 10.1109/MWC.2018.1700291.

