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Abstract—  

Small modifications in the virus code are easily detected by conventional signature-based malware detection 

techniques. The majority of malware programs nowadays are modifications of other applications. They thus 

have various signatures yet have certain similar patterns. Instead than only seeing slight changes, it's 

important to recognize the virus pattern in order to protect sensor data. However, we suggest a quick 

detection technique to find patterns in the code using machine learning-based approaches in order to quickly 

discover these health sensor data in malware programs. To evaluate the code using health sensor data, 

XGBoost, LightGBM, and Random Forests will be specifically used. The codes are either supplied into them 

as single bytes or tokens or as sequences of bytes or tokens (e.g. 1-, 2-, 3-, or 4- grams).  

 

I. INTRODUCTION 

All types of sensors are being used to gather health 

sensor data as we enter the Internet of Things Era. 

Eventually, malicious software or programs that are 

hidden in health sensor data and are regarded as 

intrusions in the target host computer are executed in 

accordance with a hacker's predetermined logic.  

Computer viruses, worms, Trojan horses, bonnets, 

ransom ware, and other harmful codes fall under the 

category of hazardous codes in health sensor data [1]. 

Malware assaults may harm computer networks and 

systems while stealing sensitive data and core data. 

One of the biggest risks to modern computer security 

is it [2, 3]. There are typically two kinds of malware 

analysis techniques. [4-7]. (1) Static analysis is often 

carried out by examining each component of a binary 

file and displaying its many resources without 

actually using it. A disassemble may also be used to 

disassemble (or redesign) binary files (such as IDA). 

Humans are able to read and comprehend assembly 

code, which may sometimes be converted from 

machinecode

.  
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Malware analysts are able to decipher assembly 

instructions and see the program's intended behavior. 

Some contemporary malware is developed utilizing 

unclear methods to thwart this kind of examination, 

such introducing grammatical flaws in the code. 

Although these mistakes might be perplexing to the 

disassemble, they are nonetheless functional during 

execution. (2) Dynamic analysis is carried out by 

analyzing the behavior of the virus while it is running 

on the host 1. The Qatar National Research Fund, a 

subsidiary of the Qatar Foundation, 

provided funding for this study under Grant NPRP10-

1205-160012. 

The writers alone bear full responsibility for the 

assertions stated in this article. System. Modern 

malware may employ a number of misleading 

strategies to evade dynamic analysis, such as testing 

active debuggers or virtual environments, delaying 

the execution of harmful payloads, or requesting 

interactive user input [8–10]. 

In this work, static code analysis is the major topic. 

The primary feature matching or broad-spectrum 

signature scanning techniques used in early static 

code analysis. Broad-spectrum scanning examines 

the feature code and employs masked bytes to 

separate the portions that need to be compared from 

those that do not, whereas feature matching simply 

uses feature string matching to complete the 

detection. The hysteresis issue is critical since both 

approaches must get malware samples and extract 

characteristics before they can be identified. In 

addition, when malware technology advances, the 

number of malware variants suddenly rises and 

malware starts to change during transmission in an 

effort to escape being detected and eliminated. It is 

challenging to extract a fragment of code to serve as 

a virus signature since the form of the variations 

varies greatly. 

II. REALTED WORK 

Given this circumstance, it makes sense to use 

machine learning-based techniques that analyze 

unfamiliar binary code using static code analysis 

while drawing on prior experience and expertise to 

automatically categorize malware. In accordance with 

the instructions, this work makes use of relevant 

machine learning-based technologies and investigates 

how to apply this strategy to the categorization of 

malware [11–14]. 

Malware detection essentially boils down to a 

classification issue that determines whether a sample 

is genuine software or malicious software. Therefore, 

the key processes of a machine learning algorithm 

drive host malware detection technology, and the 

primary research steps of this study are as follows: 

Gather enough samples of both genuine software and 

malicious code. 

Process the sample's data effectively and extract the 

characteristics. Select the classification's primary 

characteristics further. 

By combining the training with machine learning 

techniques, a categorization model is created. 

Using the learned classification model, find unknown 

samples. Finding the most useful characteristics and 

models for this practical endeavor is the final 

objective. The primary research issues and 

fundamental concepts are presented in this chapter. 

What people typically utilize in this field, how to get 

experimental data, and what we do with them in this 

study are all described below. 
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A detection model built on top of machine learning 

techniques and the model we use in the tests, 

followed by a summary and analysis of the outcomes. 

III. MALWARE CODE ANALYSIS 

A. Malware Sample Collection 

The foundation for code analysis is the efficient 

acquisition of malware samples. The classification 

model may perform more accurate detection tasks 

when integrated with machine learning methods, but 

only after proper training using the sample data [38, 

40]. Malware samples may be obtained in a variety of 

methods. 

 1) User-side sampling: The majority of anti-virus 

software providers use this as their primary 

technique. Antivirus software users that transmit 

malware samples to providers. This strategy performs 

well in real-time, but it is challenging to get the data 

directly since security providers often decide not to 

release their data in an open manner. 

2) Open network databases; examples are VX 

Heavens, Open Malware, and Virus Bulletin. The 

open online sample systems are currently constrained 

in comparison to the pace at which malicious code is 

updated, and the websites have issues such being 

subject to assaults. Therefore, the development of a 

malware sharing mechanism has shown its 

significance more and more. 

3) Additional technological methods a particularly 

fragile system is created to entice attackers to attack 

in order for the system to get malware samples via 

collection utilizing a capture tool like a honey pot 

(such as the Nepenthes honey pot). Additionally, 

certain Trojans and Internet backdoors may be 

acquired through spam traps or security discussion 

forums. The size of the capture sample for the 

aforementioned technological techniques is limited, 

however. Fortunately, Secure Age provided the raw 

data for this research, which we can utilize directly 

without further processing. Then, with regard to 

feature extraction, it is often essential to first 

disassemble the code in order to extract the static 

features of the malware. IDAPro, Hopper, OllyDbg, 

and other popular tools are included. 

One of them, IDA Pro, is an interactive disassemble 

that can produce malware assembly code in addition 

to doing other tasks including locating functional 

blocks, obtaining input functions, and outlining 

functional flow diagrams. These are likewise used in 

this essay. 

B. Feature Selection 

Three primary categories of characteristics are as 

follows: 

1) The majority of sample features are extracted 

using sequence-based feature types. The N-gram is a 

representative piece of technology. The N-gram, 

where N is the length of a feature sequence, 

presupposes that a word's N instances are only 

connected to its N1 preceding instances. The N-gram 

model breaks a phrase into LN+1 feature sequences 

using sliding windows if the phrase set has length L. 

For instance, when a 3-gram is applied to the word 

set PUSH SUB SAL, SUB SAL AND, SAL AND 

DIV, AND DIV LDS, and DIV LDS POP (L=7 at 

this time), five distinctive sequences are produced: 

PUSH SUB SAL, SAL AND DIV, AND DIV LDS, 

and DIV LDS POP. Each string consists of three 

words. 

In order to successfully identify malware in the 

choice of lemmas, Abou-Assaleh [15] first proposed 

a feature extraction framework based on byte 

sequences and applied the K closest neighbor 

classification approach. Opcodes are employed to 

choose words in a unique manner. Henchiri published 
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an unique method for extracting n-gram 

characteristics [16]. We can better define malware by 

extracting opcode  features. According to Moskovitch 

[17], who examined five different classifiers based on 

opcode sequences using a test set of more than 3 104 

files, the detection accuracy for malware was as high 

as 99%. to increase classification precision in the 

presence of incomplete and noisy data. Abualsaud 

[39] published a new noise-aware signal combination 

(NSC) ensemble classifier. Using feature extraction, 

NSC Five different types of characteristics are 

selected for this paper: 

The byte count function. As far as we are aware, a 

computer's files are entirely composed of binary and 

hexadecimal code. It makes sense to count the 

numbers in raw exe files. The first 4096 number 

strings of exe files are obtained using the PE header 

as shown below. 

 

Fig. 1. Number string of exe files. 

This is a series of strings from 0-255, and a label 0/1 

is at the beginning. We count the number of 0-255s in 

all strings and make labs files using them. 

 

Fig. 2. Labs files 

A labs file is a common data format in machine 

learning. Each line in it starts with a label and some 

data such as x:y, which means that dimension x’s 

value is y. In the labs, a label of 0 represents malware 

and 1 represents safe software, while x: y means that 

in this exe file, the number x occurs y times. 

C. Model Selection 

The characteristic data that are obtained by the static 

and dynamic analysis of the malicious code can be 

used as inputs into the machine learning algorithm 

training in order to generate a corresponding 

malicious code classifier. 

The Naive Bays is a simple method to build a 

classifier. In many practical applications, the Naive 

Bayesian model 

Parameter estimation uses the maximum likelihood 

estimation method. In other words, the Naïve 

Bayesian model 

Can work without the Bayesian probability or any 

Bayesian model [39]. 

The KNN algorithm is one of the most intuitive 

machine learning algorithms. One of the KNN's 

strengths is to support "enhanced learning," where 

new samples of the training set can be trained as 

being incremental without having to retrain the model 

[38, 40]. 

The SVM algorithm tries to find a linear hyper plane 

for binary classification. The SVM and KNN 

algorithms are 

More efficient when dealing with smaller samples, 

but as the data sets increase in size, the SVM and 

KNN become 

Computationally expensive [39]. 

Random Forests are a kind of bagging model, which 

is a joint prediction model that is composed of 

multiple decision trees. If the model we train in the 

process is a decision tree, then we will get a Random 

Forest. For a wide variety of data, it can produce 

high-accuracy classifiers. It can handle a large 

number of input variables. It can assess the 
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importance of variables when determining categories. 

Additionally, the learning process is very fast. 

The naïve Bayes, SVM, KNN [39] and Random 

Forest [25] are 4 traditional learning models. There 

are also some new machine learning models that 

were invented in recent years. XGBoost is an open-

source software library that provides the gradient 

boosting framework for C++, Java, Python, R, and 

Julia. The biggest feature of XGBoost is that it can 

automatically use the CPU's multithreading to 

improve the algorithm’s accuracy. It has gained much 

popularity and attention recently as it was the 

algorithm of choice for many winning teams of a 

number of machine learning competitions. 

(Wikipedia) CART (regression tree) is the most basic 

part of XGBoost. It builds a classification tree based 

on training characteristics and training data, and 

determines the prediction result of each 

Piece of data. The construction of the tree uses the 

gin index to calculate the gain and select the features 

of the tree. The formula of the gin index is given as 

formula (1), and the gain formula of the gin index is 

given as formula (2) 

 

Pk represents type k’s probability in dataset D, and a 

large K means a large number of types in D. 

 

D represents the entire dataset; D1 and D2 represent 

the datasets with feature A in the dataset and the 

datasets with 

Feature non-A, respectively; and Gini(D1) denotes 

the gini index of the datasets with feature A. 

In XGBoost [19], the objective function is 

approximated by a second-order Taylor expansion 

and the time complexity significantly decreases. It 

also defines the complexity of the tree and applies it 

to the target function, which can dynamic grow the 

tree through splitting and segment evaluations at the 

split nodes. These are the advantage of XGBoost that 

traditional boosting algorithms do not have. 

LightGBM [20] is another kind of boosting model. It 

is a fast, distributed, high performance gradient 

framework based on decision tree algorithms, which 

is used for ranking, classification and many other 

machine learning tasks. It is under the umbrella of the 

DMTK project of Microsoft. The shortcomings of 

XGBoost are as follows: (1) each iteration requires 

traversing the entire training data multiple times. (2) 

When traversing each split node, a split-gain 

calculation is needed, which consumes a lot of time 

too. In this paper, the models we use are XGBoost, 

LightGBM 

And Random Forest. We tested the SVM (Support 

vector machine) before, but the running speed is too 

slow and the 

Performance is not good enough, and so we 

ultimately decided to use these 3 models. 

IV. EXPERIMENTAL ANALYSIS 

In order to illustrate the performance differences 

between the models, between the features and even 

between different dimensions in the same feature, we 

extract 27 subdivided features, including the byte 

count (256d, where d represents dimensions), opcode 

1-gram (150d), opcode 2-4-grams (150, 450, and 

750d), daf 1-gram (150d), daf 2-4-grams (150, 450, 

and 750d), segment (150, 450, and 750d) and dll 

(150, 450, and 750d), and conduct 81 experiments 

(we run each feature’s libsvm file in XGBoost, 

LightGBM and Random Forest). The training set is 

from Secure Age’s malware sample from 04/2017 
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and the test set is the sample from 05/2017. The 

experiments include 4 parts: 

1. Testing the effect of each feature and model in this 

practical dataset. 

2. Testing which model performs the best for a 

certain feature. 

3. Testing which feature performs the best on the 

whole. 

4. Testing which dimension leads to the best results 

with respect to a certain feature. 

For opcode and daf features, we assess the 

evolutionary trend from 1-gram to 4-grams and 

whether opcode or daf is better. For a certain model, 

we also test which kind of feature that model prefers 

to use. 

Three measures are adopted to evaluate them. 

1. AUC (area under the curve): If a positive sample 

and a negative sample are randomly selected, the 

AUC gives the 

Probability that the classifier correctly gives the 

positive sample a higher score than the negative 

sample [21]. The 

Higher the AUC value is, the stronger the sorting 

ability of the model [22]. 

2. Precision and Recall: In this dataset, we define the 

number of positive samples as P and the number of 

negative samples as N (malware or legitimate 

software). In the first case, for a sample, if the 

prediction is positive and it is actually positive, we 

call it a true positive (TP). In the second case, if the 

prediction is positive and the actual value is negative, 

we call it a false positive (FP). In the third case, if the 

prediction is negative and the actual value is positive, 

it is called a false negative (FN). In the last case, if 

the prediction is negative and the actual value is 

negative, it is called a true negative (TN) [39, 40]. 

Each sample can only belong to one of these four 

cases. There is no other possibility. Then, we have 

the following: P=TP+FN, N=TN+FP, Precision- 

P=TP/TP+FP, Precision-N=TN/TN+FN, Recall-

P=TP/P, and Recall -N=TN/N. Recall reflects the 

ability of the classification model to identify P/N 

samples. The higher the recall is, the stronger the 

model's ability to identify P/N samples. The precision 

[23] [41, 42] reflects the ability of the model to 

discriminate N/P samples. 

3. Accuracy: TP+TN/P+N. It reflects the accuracy of 

the classifier on the whole, that is, the proportion of 

correct 

Predictions. First, compare the three models from the 

scale of features. The comparison for the byte count 

feature is shown in Fig. 4. 

Byte count has only one dimension, 256, since there 

are 256 possible numbers in the byte count (0-255). 

LightGBM 

Performs the best for byte count. The comparison for 

the instruction 1-4-grams features is shown in Fig. 5. 

For the 

Instruction 1-gram, there are only 160+ kinds of 

instructions in the X86 assembly language, and so it 

has only 1 dimensions: 

150. For the 2-4-grams, we give it the 3 dimensions 

of 150, 450, and 750, which mean that we count the 

150, 450, and 750 most common instructions, 

respectively. We also test 3 dimensions in the 

remaining features except for daf 1-gram since we 

want to compare it with the instruction 1-gram. 
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Fig. 4. Comparison for the byte count feature 

 

Fig. 5. Comparison for instruction 1-4-grams features 

for 1-gram and 2-grams, XGBoost is a little better 

than LightGBM, while for 3-grams and 4-grams, the 

result is just the opposite. However, in regard to the 

dimensions, the conclusion is the same, regardless of 

the model. 750d is better than 450d, and 450d is 

better than 150d. If we compare the best accuracy of 

1-4-grams, we can find that 2-grams >1- gram >3-

grams >4-grams. The comparison for the daf 1-4- 

grams features is shown in Fig. 6. 

 

Fig. 6. Comparison for daf 1-4-grams features 

LightGBM is always the best in 1-4-grams. 

Furthermore, 

We have same dimensional comparison result of 

750d>450d>150d and the almost same result for the 

different grams of 1-gram>2-grams>3-grams>4-

grams. Compared with the simple opcode feature 

[24], the opcode is better than the daf feature by 

2.5%. The comparison for the segment feature is 

shown in Fig. 7. 

 

Fig. 7. Comparison for segment feature 

LightGBM is the best in this feature, while to my 

surprise, 450d is better than 750d and 750d is better 

than 150d. The comparison for the Dll function 

feature is shown in Fig. 8. 

 

Fig. 8. Comparison for Dll function feature 

In this feature, all of the 3 models do not perform 

well. If we must evaluate them, LightGBM is still the 

best, and 

750d>450d>150d. 
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Fig. 9. XGBoost comparison 

Second, we compare the three models from the scale 

of models. The comparison for XGBoost, LightGBM 

and Random Forest [25] are shown in Fig. 9, Fig. 10, 

and Fig. 11 respectively. 

As is shown, XGBoost and LightGBM prefer the 

750d feature while Random Forest prefers 450d 

feature. They all prefer the Sequence-based feature 

types rather than the API Call-based feature types. 

 

Fig. 10. LightGBM Comparation Fig. 11. Random 

Forest Comparison In general, we can say that 

opcode1-gram, 2-grams, daf 1- gram and segment 

count are the 4 most effective features. For the grams, 

1 and 2 are better than 3 and 4, perhaps because 1- 

gram and 2-grams have more identifiable grammar 

[26]. For the dimension, the greater the dimension is, 

the better the result but the Random Forest may not 

be able to deal with too much noise in high 

dimensions, while XGBoost and LightGBM perform 

well. For the models, Random Forest is significantly 

worse than the other 2 models. In some features, 

XGBoost has better performance, while for most 

features, LightGBM is better. LightGBM is indeed an 

optimized version of XGBoost. 

CONCLUSION 

The use of machine learning techniques in the 

identification of dangerous code has been 

increasingly appreciated by the academic community 

and various security companies due to the complexity 

of malware codes hidden in health sensor data [27-

30, 38, 40]. This study, which is founded on the idea 

of machine learning, integrates the benefits of many 

models [31–33, 36–37] and addresses static code 

analysis using various machine learning methods and 

code attributes. For the design and implementation of 

malware detection technologies for machine learning 

in the future, this study may serve as a useful 

reference [34]. This section is still in the developing 

stage, nevertheless. Below is a list of all the duties 

and difficulties that still need to be accomplished. 

1. A lack of useful data: To create an efficient model, 

a machine learning algorithm often has to be trained 

on tens of thousands of data points [35]. These 

fundamental data must often be acquired manually, 

and the speed cannot be guaranteed [36, 37]. 

2. Interpretable outcomes are lacking: Internally, this 

is due to the fact that we just know that numerous 

features are beneficial without understanding why. 

The biggest hurdle in the future will be how this issue 

is interpreted. 
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