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ABSTRACT 

Currently, the growth of material data from experiments and simulations is expanding beyond 

processable amounts. This makes the development of new data-driven methods for the 

discovery of patterns among multiple length scales and time-scales and structure-property 

relationships essential. These data-driven approaches show enormous promise within 

materials science. The following review covers machine learning (ML) applications for 

metallic material characterization. Many parameters associated with the processing and the 

structure of materials affect the properties and the performance of manufactured components. 

Thus, this study is an attempt to investigate the usefulness of ML methods for material 

property prediction. Material characteristics such as strength, toughness, hardness, brittleness, 

or ductility are relevant to categorize a material or component according to their quality. In 

industry, material tests like tensile tests, compression tests, or creep tests are often time 

consuming and expensive to perform. Therefore, the application ofML approaches is 

considered helpful for an easier generation of material property information. This study also 

gives an application of ML methods on small punch test (SPT) data for the determination of 

the property ultimate tensile strength for various materials. A strong correlation between SPT 

data and tensile test data was found which ultimately allows to replace more costly tests by 

simple and fast tests in combination with ML. 
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INTRODUCTION 

 

The field of materials science relies on 

experiments and simulation-based models 

as tools for material characterization [7]. 

Material properties, such as their structure 

and behavior, are critical to the potential 

application of the material of interest. 

More recently, the data generated by such 

experiments and simulations have created 

various opportunities for the application of 

data-driven methods. In addition to, for 

example, the experimental trial and error 

approach or a physical metallurgy 

approach, machine learning (ML) methods 

for property prediction and material design 

have attracted a lot of attention in recent 

years, see for example, [33, 109, 162]. 

While experimental investigations (the so-

called first paradigm of materials science) 

have been carried out since the stone and 

copper age, scientists of the 16th century 

started to describe physical relations by 

equations (second paradigm). Thus,  
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analytical equations became a central 

instrument of theoretical physics which 

were able to complement the empirical and 

experimental sciences. The 1950s marked 

the beginning of computational materials 

science and simulations, the third 

paradigm. Within this framework, 

computer experiments and simulations 

became possible, with the corresponding 

results being analyzed and interpreted like 

measured ones. It had to be recognized that 

many properties of materials cannot be 

described by a closed mathematical form 

as they are determined by several 

multilevel, intricate theoretical concepts. 

With the help of large amounts of data, 

hidden correlations, reflected in terms of 

structure and patterns in the data can be 

discovered that are not normally visible in 

small data sets. Thus, the fourth paradigm, 

data-driven science, of materials research 

was born [7, 34]. However, it is not only 

an advantage to have a large data volume 

but it can also be a challenge to cope with 

tremendous amounts of data. Today, data 

are indeed more andmore easily acquired 

and stored, due to huge progresses in 

sensors and ways to collect data on one 

side, and in storage devices on the other 

side.Nowadays, there is no hesitation 

inmany domains 

in acquiring very large amounts of data 

without knowing in advance if they will be 

analyzed and how. The spectacular 

increase in the amount of data is not only 

found in the number of samples collected 

for example over time, but also in the 

number of attributes, or characteristics, 

that are simultaneously measured on a 

process. Data are gathered into vectors 

whose dimension corresponds to the 

number of simultaneous measurements on 

the process. Growing dimensions result in 

high dimensional data, as each sample can 

be represented as a point or vector in a 

high-dimensional space. Working with 

high-dimensional data means working 

with data that are embedded in high-

dimensional spaces [159]. The curse of 

dimensionality is the expression of all 

phenomena that appear with high-

dimensional data, and that have most often 

unfortunate consequences on the behavior 

and performances of learning algorithms. 

Contrary to the curse of dimensionality, 

databases in materials science are often 

limited in size due to expensive and 

time consuming data acquisition via 

experiments or simulations [136]. Then the 

insufficient data size for the training of a 

ML model compromises the learning 

success and suitable new approaches for 

small datasets have to be found. Thiswork 

contains a literature survey which covers 

an overview ofML for materials science 

and specifically for metallic material 

characterization. As the measurement of 

such parameters is often expensive and 

time consuming obtained via experiments, 

alternative basic tests, such as the small 

punch test (SPT) can be an option if it can 

be shown that the same material property 

information can be extracted. 

There is a wide range of ML approaches 

based on SPT data which will be 

presented.  

STATE OF THE ART 

Overview—ML for materials science 

With ML, given enough data and a data-

driven algorithm for rule discovery, a 

computer is able to determine physical 

laws which lead to the given data without 

human input [19, 68]. Traditional 

computational approaches use the 

computer for the employment of a hard-

coded algorithm provided by a human 

expert. By contrast, ML approaches learn 

the rules that underlie a dataset by 

assessing a portion of that data and 

building a model to make predictions [19]. 

However, the human still needs to choose 

suitable ML models which supposedly 

represent the data well and do manual 

(sub-)tasks in preprocessing and feature 

generation. The existence of large amounts 

of data makes the use of ML models 
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possible and enables data-driven 

knowledge to be obtained and patterns to 

be discovered. On the other hand, big data 

and their high dimensionality lead to 

difficult computational and statistical 

challenges, such as scalability and memory 

shortage, noise accumulation, interference 

correlation, incidental endogeneity, and 

measurement errors [40]. Materials science 

is an interesting field of application for big 

data methods and ML approaches which is 

beginning to show enormous promise. 

Four primary elements are critical in 

materials science and engineering: 

processing, structure, properties, and 

performance [110, 115]. There is no 

general agreement, however, on how these 

elements are interconnected. ML methods 

can be applied to the so-called process-

structure-property-performance chain for 

learning more about the intrinsic 

interrelations of these components. One 

main goal is the enabling, acceleration, and 

simplification of the discovery and 

development of novel materials based on 

the convergence of high-performance 

computing, automation, and ML [27]. 

Another aim of using such approaches in 

the field of materials science is to achieve 

high-throughput identification and 

quantification of essential material 

properties [15]. Besides experimentally 

obtained datasets, numerous studies draw 

required information from simulation-

based data mining. Altogether, it is shown 

that experiment- and simulation-based data 

mining in combination with ML tools 

provide exceptional opportunities to enable 

highly reliant identification of fundamental 

interrelations within materials for 

characterization and optimization in a 

scale-bridging manner [15]. For more 

detailed information on recent ML 

applications in materials science we refer 

to the general reviews of 

Mueller et al Wagner et al , Dimiduk et al , 

or Wei et al . Examples for successful 

applications of ML techniques in materials 

science are, for example, to represent 

inorganic materials predict fundamental 

properties create atomic potentials , 

identify functional candidates analyze 

complex reaction networks or guide 

experimental design high-throughput 

phase diagrams and crystal structure 

determination 

Open problem—interpretability 

However, one of the major criticisms 

ofML algorithms in science is the lack of 

novel understanding and knowledge 

arising from their use. This ismostly 

becausemore complex ML algorithms are 

often treated as black boxes. 

Thosemachine-built  models are hard to 

understand for humans. For a better 

acceptance ofMLmodels, data scientists 

aim to establish clear causal relations 

between materials structure defined 

broadly across length scales and 

properties. Especially scientific models 

have further constraints such as a minimal 

number of parameters and adherence to 

physical laws. It is the obligation of the 

data scientist to translate the results 

of their work into knowledge other 

scientists can use in aiding for 

examplematerials discovery or deployment 

. Useful techniques for finding simple, 

reduced and interpretable models are for 

example principal component analysis 

(PCA) , cross-validation and 

regularization, and a thoughtful choice of 

model. PCA is a powerful technique for 

data dimensionality reduction. Large 

datasets are increasingly widespread. In 

order to interpret such datasets, PCA can 

be applied to drastically reduce their 

dimensionality in an interpretable way, 

such that most of the information in the 

data is preserved  PCA extracts the 

orthogonal directions with the greatest 

variance from a dataset, the resulting 

principal components being linear 

combinations of the original variables. 

However, principal components are not 

necessarily simple to interpret physically 

but as the extracted features are linear 

combinations of the original variables they 

can still be intuitively explained. 
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Moreover, it allows a very straightforward 

data visualization 

through data projection onto the main 

extracted components . However, PCA 

might be the wrong choice if features are 

not covariant. Another way to achieve 

interpretable ML models is intelligent 

feature selection for dimension reduction 

and thus easier interpretability. 

Regularization of a model entails adding a 

tunable penalty on model parameter size to 

the cost 

function being minimized leading to a 

reduced feature space Furthermore, the 

choice of ML model has an immediate 

impact on its explainability. Regressions 

lead to coefficients whose size gives 

information about the relative size effect of 

modifying an input on the output. Decision 

trees are set up like flow charts and 

therefore easy to read. More complex 

models such as artificial neural networks 

(ANNs) are missing a clear explanation of 

the machine’s “thinking” due to complex 

node interactions. But methods such as 

feature visualization or attribution exist, 

which allow a better understanding and 

interpretability of black box models. 

However, sometimes it might be 

reasonable to trade model accuracy for 

better explainability. 

DISCUSSION AND CONCLUSIONS 

This survey addresses applications of 

machine learning strategies inmaterials 

science for material characterization. 

There exists a wide range of promising 

applications for ML in materials science, 

for example, material discovery, molecular 

dynamics, and global structural prediction. 

The demand for new approaches dealing 

with limited data is huge. It was shown 

that data-driven approaches play a 

significant role in materials research in 

order to find relationships between the 

structure of amaterial and its properties. 

These relationships are often not linear. It 

is difficult to find generic patterns among 

multiple length scales and timescales. With 

experiments only, this cannot be achieved 

Therefore, data-mining techniques are 

indispensable for the recognition of 

correlations in the (experimental and 

simulated) data. As the amount of publicly 

available materials data grows, ML 

techniques in particular will be able to 

extract from these data sets scientific 

principles and design rules that could not 

be determined through conventional 

analysis. The majority of early ML 

applications to materials science employed 

straightforward and simple-to-use 

algorithms, like linear kernel models and 

decision trees. Now, these proofs-of-

concept exist for a variety of applications 

even though there is a lack of 

benchmarking datasets and standards. To 

date,MLoften cannot realize the expected 

accuracy when applied to some tasks due 

to insufficient material data. Therefore, a 

more accurate model that was trained on a 

small but accurate data set is only 

meaningful within the input data space but 

does not generalize well while a less 

accurate model on a wide input data space 

is better at generalization but less exact. 

Therefore, accelerating the construction of 

publicly accessible material databases is 

highly important for the future 

development of ML in materials science. 

Another issue that holds back the 

development of precise ML models is the 

absence of failure data. In this case, a 

cultural shift toward the publication of all 

valid data, may it be positive or negative, 

is required. The majority of ML 

approaches in materials science is based on 

ANNs. However, conventional ANNs still 

suffer from several weaknesses such as the 

need for a large number of controlling 

parameters, the difficulty in obtaining 

stable solutions, the danger of overfitting 

and thus the lack of generalization 

capability [41]. However, ANNs have 

been enormously successful in 

understanding complex materials behavior, 

such as mechanical behavior (flow stress, 

hardness, tensile strength, fracture 

strength, and fatigue behavior) of metal 

alloys subjected to certain heat treatment 

and/or deformation procedures, as well as 
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in the prediction of micro-structures and 

phases resulting fromheat treatment and/or 

deformation processes. The most practical 

way to capture the complex dependence of 

a desired macroscopic property on the 

various process parameters is through such 

learning methods . ANNs have the 

potential to minimize the need for 

expensive experimental investigation 

and/or inspection of structural materials 

used in various applications, hence 

resulting in large economic benefits for 

organizations. In addition to ANN hybrid 

ML models or ensemble methods work 

well . For this, multiple independent 

models are built and the final regression or 

classification result is usually obtained as 

an average over the ensemble. In this way, 

additional noise is introduced into the 

fitting process and overfitting is avoided. 

However, there does not exist an overall 

solution that can be considered the best. 

The most appropriate model has always to 

be found specifically for the application 

and data situation. Furthermore, this paper 

focuses on ML based material property 

prediction from SPT data. Such simple 

material tests have gained popularity over 

the last couple of years because even 

though they are cheap and simple to 

perform, they make accurate material 

characterization possible, especially for 

failure analysis and remaining life 

assessment of in-service components or 

structural parts. Nevertheless, a few 

disadvantages have to be taken into 

consideration. The small sample size might 

not represent the bulkmaterial; the sample 

size effect influences thematerial 

properties; and the results of the SPT are 

sensitive to test parameters. However, also 

for SPT data, ML based models are 

popular for material parameter 

prediction.Most commonly found are 

ANNs, especially in combination with 

FEM for data generation. No application 

of traditional ML models to SPT data was 

found in the literature. The paper 

concludes with an application example 

which uses FDCs of structural materials as 

the basis for predicting he UTS. 

SimpleML approaches presented here, 

such as linear regression models or RFs 

provide good results for predicting the 

UTS based on SPT data, even for a very 

small database. As a consequence, it is 

possible to confirm the benefit of simple 

ML techniques in predicting mechanical 

properties such as the UTS based on as 

simple material tests as the SPT and the 

authors are sure that ML will positively 

shape materials science for the years to 

come. 
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