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Abstract—Human beings live and work in close proximity to dangerous gases. Chemical accidents often
cause

considerable damages to human lives as well as properties and their short- and long-term impact on the environment canbe
high. Hence, diligent monitoring and management of these gases are of profound importance. Inindustries where chemical
accidents pose potential explosions and health hazards, wired sensors are installed in strategic locations. In some
industries, employees are required to carry with them portable sensing devices in addition. Still, achieving high spatio-
temporal resolution is challenging, since dense deployments impede the mobility of employees, robots, or other mobile

: ; es.
Nanotechnology offers the possibility of developing gas sensors having small form-factors and high sensitivity. Wireless
sensor networks enable high spatio-temporal sensing, in-network processing, and multi-hop communications. The paper
shares our experience with a wireless sensor network monitoring ammonia. The network consisted of 21 sensor nodes, four of
whichintegrated arrays ofammoniasensors while the rest served as intermediate nodes.

Index Terms— Ammonia, hydrogen sulphate, latency, monitoring, multihop communication, nanosensors, nanotechnol-

ogy, response time, toxic gas detection, wireless sensor networks

|. INTRODUCTION

Human beings often live and work in close proximity to
dangerous gases. During oil exploration and refinery, toxic
gases, such as ammonia and hydrogen sulfide, are produced as
byproducts [1], [2]. The gases are useful for producing fertil-
izers, environment friendly refrigerants, explosives, munition
plants, and pharmaceuticals [3], but they are also dangerous.
Ammonia is a highly reactive, soluble alkaline gas which is
lighter than air. If inhaled, it cauterizes respiratory tracts and can
be fatal at concentrations above 5000 parts per million (ppm).
Similarly, hydrogen sulphide is an extremely toxic and
flammable gas which produces a rotten egg odor discernible at
concentrations below 15 ppm.

Chemicals accidents cause human losses and damage to
propertiesandtheireffectontheenvironment canbe detrimen- tal
[4]. In 2021, a chemical accident in Ludwigshafen, Ger- many,
caused an explosion and the release of 150 kg of methyl
diethanolamine into the Rhein river [5]. Four years prior to this
accident(in2017)apipeline explosion in the same industry killed
three and seriously injured eight employees. At the time, the
pipelines were transporting ethylene and propylene [6]. In 2015,
a chemical industry in the Shandong province of China
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exploded, releasing a highly toxic gas (adiponitrile) into the
environment; 215 people needed immediate medical treatment
and 5 were injured seriously [7]. Cheung et al. [8],
citing the National Census of Fatal Occupational Injuries survey
conducted by the U.S. Bureau of Labor Statistics, observed thatin
2015 there were 4836 workers killed on construction sites due to
illness and fatalities — 9% of these were due to exposure to
hazardous environment and 3%, due to fire and explosions.
Perhaps, the most fateful chemical accident in his- tory was the
1984 chemical factory accident in Bhopal, India, which spewed
40 tons of a toxic gas into the environment, causing a profound
and long lasting health hazard to the city’s inhabitants[9]. In2015
the European commission published a list of accidents in
chemical industries across Europe that year along with their
causes, estimated damage, and the lessons learned [10]. In
underground mining, employees are likewise exposed to
dangerous gases and explosions sparked by coal-dust[11].

In industries where chemical accidents pose potential ex-
plosions and health hazards, wired sensors are installed in
strategic locations. In some industries, employees are required to
carry with them portable sensing devices in addition.
Still, achieving high spatio-temporal resolutions is challenging,
since dense deployments may impede the mobility of em-
ployees, robots, equipment, and other objects. Wireless sensor
networks have several advantages. The nodes can be deployed
easily and unobtrusively and their placement can be opti- mized
based on experience and field observations. Similarly, network
maintenance can be carried out without impending normal
working conditions (and in some situations without involving
human presence). Moreover, with the emergence of nanosensors,
dense deployments can be supported to cover
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extensive areas. But there are some challenges associated with
wireless communications. Firstly, compared to wired links,
wireless links are subject to interference and a high
degree of packet loss. Secondly, the transmission range of
wireless transceivers are limited which necessitates multi-hop
commu- nication. Multi-hop communication exacerbate packet
loss and end-to-end packet transmission latency, thereby
affecting theresponse time ofthe sensing system.

This paper proposes the use of nanotechnology and wireless
sensor networks for monitoring toxic gases. Nanotechnology
offers the possibility of developing gas sensors having small
form-factors and high sensitivity. The sensing mechanism relies
on the chemisorption and physisorption of gas molecules on the
surface and interface of nano materials such as carbon nanotubes
[12]. The wireless sensor network supports in- network
processing (to reduce the network traffic density) and multi-
hop communication. In our first prototype we focus on
monitoring ammonia. The contributions of this papers are
summarized as follows:

- Gas nanosensors with detection limits reaching 3 parts
perbillion (ppb).

- Wafer-scalecompatiblefabricationofsmallfootprint(2.4 cm
x2.4cm)devices consisting 0f64 gas sensors.

- Low responsetime compared to commercially available
ammonia sensors.

- A fully functional multi-hop wireless sensor network in-
tegrating arrays of nanosensors for monitoring ammonia.

The remaining part of this paper is organized as follows:
In Section II related work is reviewed. In Section III, the
development and integration of arrays of nanosensors are
discussed. In Section IV, a mathematical model for data
aggregation is presented. In Section V, the set up process and the
performance of a wireless sensor network for monitoring
ammonia is discussed. In Section VI the performance of the
wireless sensor network is evaluated and comparison of results
with state-of-the-art are discussed. Finally, in Section VII,
concludingremarks are given and open issues are identified.

Il. RELATED WORK

Recent advances in processor, wireless, and sensor tech-
nologies promise high resolution, distributed, and autonomous
monitoring of dangerous gases in various places.

Changetal.[13] observe thatas the level of pollution increases
worldwide, the amount of volatile organic com- pounds and toxic
inorganic gases populating the air increases, causing great
harm to human life. One of these substances is aniline.
Accordingly, when the body is exposed to aniline vapor, the skin,
the digestive tract, and the respiratory tract absorb the gas. This
may result in different health conditions, including
methemoglobinemia, liver damage, and carcinogen- esis. The
authors developed ananosensor to monitor aniline and integrated
the sensor into a wearable device that fires an alarm when the
surrounding aniline concentration passes a set threshold.

Perez et al. [14] propose a wireless sensor network for
monitoring combustible and harmful concentrations of toxic
gases as well as organic vapors, odorant, and amine in

a
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shipyard. The main focus of the researchers, though, was on
testing the performance of the sensor network in terms
of its response time and reliability. Thus, the authors integrated
off-the-shelf portable gas detectors (Drager X-am 5000) into
wireless sensor platforms and sampled the sensors every minute.
Their analysis consisted of round trip time (RTT), packet error
rate (PER ) and link quality indicator (LQI) of the wireless
links, taking into account the number of hops the packets needed
to reach their destination. The robustness of the network and the
response time of the overall system were analyzed from the point
of view of a control station outside the shipyard. The packets
neededupto 5-hoptoreachthecontrolstation. Accordingly, RTT
varied between 30 and 40 ms, and no packets were lost, except for
the case of the longest hop, in which case the PER was 3%. The
authors carried outin-ship tests, considering five different in-ship
communication scenarios. In the first four, RTT, LQI and PER of
representative internal single-hop links were measured. In the
last scenario, they examined PER and RTT for a worst-case
multi-hop path to monitor one of the ship holds, transmitting
detector gas readings to a control station outside the vessel. In all
the in- ship tests, node transmission power was set to its
maximum value (20 dBm).

Asthana et al. [15] propose a wireless sensor network for
monitoring the safety of sewage workers during cleaning
and maintenance. The authors observe that septic tank gases may
have concentrations of methane, carbon dioxide, sulfur dioxide,
ammonia, hydrogen sulphide, nitrogen dioxide, and carbon
monoxide, albeit with different intensities. Of these, the
predominantaremethaneandcarbonmonoxide,whicharealso the
target gases the authors aimed to monitor. The monitoring system

is intended to immediately alert workers as well as a
central station which closely examines the concentration and
distribution of the gases and their long-term impact. In
addition, the central station remotely calibrates all the gas
sensors, adapt their sampling rates and intervals, and determines
the appropriate threshold levels for septic plants and facilities.
The authors integrated a commercially available gassensor(MQ-
4 gas sensor!), a CO sensor, and a temperature sensor into an
Arduino Uno platform [16] and defined the following thresholds
to fire an alarm: 2.3 ppm for CO and 60 ppm for methane. The CO
sensor, in addition, measures the heat and motion of surrounding
objects.

Cheung et al. [8] propose a system for monitoring toxic gases

in construction sites. It consists of a control station, a
sensing subsystem, and an actuating subsystem. The later
includes a flash, an alarm system, and a ventilator to be activated
in case of emergency. An actuating node controls these
components. The sensing subsystem consists of gas and
environmental sensors (temperature and humidity) as well as
routers. Furthermore, the system was integrated with a building
information modeling (BIM), an advanced technology in
construction industry development to fuse different kinds of
construction informationintoa3D digital model. The BIM can be
employed in all stages of a project life-cycle, such as plan- ning,
design, construction, operation and maintenance. The

"Hanwei Electronics (www.hwsensor.com).
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integration enables to monitor the construction site visually and
remotely via a spatial, colored interface. The system was
deployed in north Taiwan, in a tunnel having a diameter of 5.6 m
and a length of 528 m at a time when an actual underground
construction was taking place. The deployment was intended to
measure the response time of the system as a whole and
the reliability of the wireless sensor network. The wireless
sensors were placed with 100 m separation distance between
them. The authorsreported an impressiveresponse timeof 1- 2.
Thistime includes the detection ofa gas concentration above aset
threshold and an end-to-end packet transmission latency.
Moreover, the system was able to alert the control station by
indicating the abnormal condition on the tunnel’s BIM. At the
same time, the control node started the flash, the alarm, and the
ventilator.

I1l. NANOSENSORS INTEGRATION

The accuracy with which toxic gases can be detected depends
on the surface area to volume ratio of the sensor. Typically, gas
detection takes place when gas molecules change the resistance
ofanunderlying electric material in accordance with their atomic
property and in proportion to the interaction intensity. Besides
accuracy, sensitivity, selectivity, and response time are crucial,
considering the magnitude of damage a gas leak can cause.

A. Technology

Our gas sensors are chemiresistors based on semiconducting
single-walled carbon nanotubes (sc-SWCNTs) [17]. The sens-
ing mechanism relies on the chemisorption and physisorption of
the gas molecules on the surface of the nanotubes and
the nanotube-electrode interface which modify the electrical
properties of the system. The sensitivity provided by nano-
materials due to the high surface area to volume ratio is key,
together with a fastresponse time and selectivity, considering the
magnitude of damage a gas leak can cause. sc-SWCNTs in
particular are known to respond more strongly to ammonia than
to other gases [18]. Such response occurs due to the pres- ence of
free carboxyl acid functional groups on their surface, which are
prone to interact with amine compounds [19]. In addition,
nanotechnology has excellent features such as low power
consumption, high electron transport, and mechanical properties
allowing the fabrication of high sensitive sensors on flexible
and lightweight supports. The later enables the mounting of the
sensors on small robots and Unmanned Areal Vehicles (UAV)
with low loading capacity.

In order to achieve a high sensitivity and a high spatial
resolution, the sensing subsystem consists of an array of 64
chemiresistive sensors. The output of these sensors are multi-
plexed using four 16-channel, low leakage current multiplexers
(ADG706), as shown in Fig. 1.2 The selected current
from

2Containing a large amount of sensors in the array can be helpful for various
purposes: (a) to select those with optimal characteristics, (b) to find alternative
sensors when some of them present malfunction, (c) to provide self-validation
by observing the simultaneous response of multiple sensors, (d) to enable
future implementation of multiple materials and their modifications toward the
detection of multiple gases, and (e) to allow deeper signal processing and
mathematical statistics such as cellular nonlinear networks [20].
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Fig. 1: The architecture of a 64-channel nanosensor for detecting
ammoniaandhydrogen sulfide.

Fig.2: Awirelesssensornodeintegratinganarray ofnanosen- sors
fortoxicgasdetectionandaRaspberryPiandthe Zolertia platform
for network management. each multiplexer is then fed to a
transimpedance stage (TIA) based on IC LMP91000. The output
voltage of the TIA is digitized using a low noise 24-bit ADC
(ADS122C04) which is then supplied to a dedicated
microcontroller (ESP32) via an 12C serial bus. The ADC is
programmable at 2 ksps. Having a dedicated microcontroller is
useful for separating the data processing (preprocessing) stage
from other tasks (network management).

B. Systemintegration

The sensing subsystem is interfaced with a Zolertia plat- form
(RE-Motes®) via a Raspberry Pi board. The Zolertia platform is
based on Texas Instruments CC2538 System- On-Chip
microcontroller and integrates two IEEE 802.15.4- compatible
wireless transceivers working in the 863-950 MHz and 2.4
GHz radio bands [21]. On this platform runs the

3https://zolertia.io/product/re-mo
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Contiki operating system. The sensing subsystem, the Zolertia
platform, and the Raspberry Pi are powered by an external power
bank. Fig. 2 showsthe entire system in the deployment field.

[V. DATAAGGREGATION

The nanosensors generate a large amount of data
which can be spatially and temporally correlated. The data have
to be meaningfully aggregated before they are transferred to a
control station, so as not to congest the network. In chemical
industries and in environments where chemical exposure may
causeahealthhazardtoemployees, differentsafety conditions are
specified. The American Conference of Governmental In-
dustrial Hygienists* (ACGIH) [22], [23] defines the Threshold
Limit Values (TLV) as an exposure limit “to which it is believed
nearly all workers can be exposed day after day for

a working lifetime without ill effect”. Similarly, it defines the
Threshold Limit Value Ceiling (TLV-C) as “the concentration
that should not be exceeded during any part of the working
exposure.” The firstrefers to a long-term exposure and requires a
long-term sensing. In this case, the sensing system should sample
all the sensors periodically and store the data for long- term
analysis. These data are also useful for the study of long- term
pollution. TLV-C, on the other hand, refers to short-term
exposure and requires an alarm to be fired immediately when a
set threshold is crossed. For the second type of sensing, the
system’s response time is a critical performance metric. It is
affected by the sensors’ response time as well as the end-to- end
packet transmission delay. The nominal time is between 20 to 30
seconds, but most oil refineries set an upper limit of 60 seconds
[2],[24].

The data aggregation strategy has a direct bearing on the
reliability of the system, the network’s traffic density, the packet
transmission latency, and the lifetime of the network. If raw
data are streamed directly, this will incur a high communication
cost and a considerable latency. Aggregating data as they
propagate towards the control station, on the other hand, reduces
unnecessary redundancy and network traffic but introduces
uncertainty during analysis.

In selecting the best aggregation strategy, we are faced with
two challenges: Firstly, since the nanosensors are sensitive, their
outputs fluctuate even in the absence of a gas. To establish the
statistics of this error, at each sampling interval, we can take the
output of each element of the sensor array as the outcome of a
random experiment. Secondly, when a gas leak occurs, the
perceived intensity varies due to a change in the
spatio-temporaldistributionofthegasmolecules. Adistinction
between the authentic and the spurious fluctuations is critical
during data aggregation. A simple averaging of the sixty-
four nanosensors at a node level introduces bias

towards
extreme values and abstracts the variation in the fluctuation. We
chose to employ the min and max operations at each sampling
interval to ensure reliable and safe monitoring. The min
operation minimizes the possibility of overlooking a gas leak
(i.e., false negative is minimized). If the minimum ofthe samples
isaboveasetthreshold, then wehave everyreason to

“https://www.acgih.org/
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trust the sensor node. The max operation, on the other hand,
minimizes the possibility ofoverreacting (false positive).

The uncertainty with which a gas leak is detected depends on
the variance in the sampled values. Hence, it is vital to ex- amine
the variance arising from the min and max operations. Since the
outputs of the nanosensors fluctuate in time as well as at an
instance, we canregard them asrandom variables. Theresults of
the min and max operations should likewise be regarded as
random variables. The variances of these random variables
encode ouruncertainty inthe aggregation task.

A. AggregateProbabilityDensityFunction

The min operation compares the values of all the sensors and
selects the one which is the minimum. In case of only two
sensorsreporting, itis expressed as:

<= (51 ifs1<s> )

s; ifsi>sy

Forour case (with sixty-four nanosensors), we have the following
relation:

s=min(syS2,...Sn) 2)

Since s is a random variable by virtue of all its inputs being
random variables, it is important to establish its statistics. We
beginwithits PDF:*

F(s)=P {s<s}=P {min(sysz,...sn) <s; 3)

Equation 3 is simpler to evaluate if we consider its comple- ment,
namely,

F(s)=1—P{s>s} 4)
in which case, we have:
F(s)=1—P {min(sy,s2,...5n) >5} 5)

The right term in Equation 5 describes a condition wherein all the
sensorsreportavalue greater thanss:

F(s)=1—P{s1>5,52>5,...5n >S5} (6)

Statistically speaking, the nanosensors are independent of one
another, so that:

F(s)=1—P{s1>5}P{s2>s}...P {sn>s} 7
Or:
Y n Y n
F(s)=1— (1—P/{si <sH)=1—  (1—Fils))
=1 =1
®)

whereFi(s)isaPDF describingtheoutputofthei-thsensor.
WithEquation8inplace,wecanderivetheprobabilitydensity
function as follows:

d
f(s)=—F(s) ®
ds

SA  Probability Distribution Function (PDF) is defines as: F(s)
P {s< s}, where sis a random variable and S is a real number.
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When a node applies the max operator, it chooses the
maximum value, so that its output as a random variable is
expressed as:

s = max(s1,S2,...5n)

(10)
The distribution function of this operation is expressed as
follows:

F(s)=P{s§s}=P{max(s,s,.i.s 5 ) <s} (11)
n
Following similar steps as in Equations 7 and 8, we can
determine the PDF ofthisrandom variable as follows:
F(s)= Fi(s) (12)
=1
B. MeanandVariance
In order to demonstrate how data aggregation affects the mean
and variance of the output, we consider a normal condition in
which a fluctuation in sensed data arises dueto noise.
We consider two theoretical cases, namely, whenthenoise
is (a) uniformly distributed and (b) exponentially distributed.
When the noise is uniformly distributed, it is possible to
normalizethevaluessothatitsdomainliesbetween
0 and 1. Hence, given the noise a nanosensor
experiences can be considered as auniformly distributed random
variable, U(0,1),itsPDF isgivenas:
Js
du=s

Fi(s)= (13)

0
Likewise, given an exponentially distributed random variable, its
PDFisexpressedas:
S
Fi(s)= AeMdu=1—e™ (14)
0

A, which is the inverse of the mean of the random variable, is
called the rate of the process. When the noise PDF is uniformly
distributed, Equation 8 yields:

Fis)=1—(1—s)" (15)

1) min: Uniform Distribution: With the statistics of the in-
dividual nanosensors in place, the min operation yields an
aggregated PDF of (using Equation 8):

F(s)=1—(1—s)" (16)
The corresponding density function is:
d
f(s)= $F(S)=n(1—5) (17)

Withf{s)inplace,wecancomputethemeanandthevariance ofthe
outputofthe min operation forthe uniform distribution:

), ),
Els]= sf(s)ds=n s(1-s) "rds  (18)
0 0
If we let u=(1—s) and substitute terms we get:
1
E[s]=n (1-uu "tdu=1— (19)

o 1+1/n

Note that we started by assuming a normal condition where
there wasno gas leak. In which case, the node should produce
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no output. So, as we aggregate the outputs of the nanosensors, the
mean approaches zero, unlike the case of the mean of
the individual nanosenjgors which i§ 1/2. The variance of s,
02, is expressed as: E (s—E[s])?> . Alternatively, it can be
expressed as: E s> — (E [s])% Taking the latter expression
yields:
2 =_1 1 ° (20)
min-— 1+2/n 1+1/n

As can be seen, the variance as a result of data aggregation
approaches zero, which means the confidence associated with the
aggregated statisticsis high.

2) min: Exponential Distribution: Similarly, when the noise is
exponentially distributed, Equation 8 yields:

Fs)=1— 1— 1-e™ "=1-e?* (21)
The corresponding density function is:
f(s)=Ane™ns 22)

Computing for the mean yields E[s] = 1/An. Here, too,
since the mean operation always favors the minimum value, as
the array size increases, the mean of the aggregation output
approaches zero (as it should be, since we are
considering a normal condition). Similarly, the variance of this
outputisgivenas:

2

Opmin = 42 (23)

3) max: Here we consider the case when the noise is
uniformly distributed, in which case:
" (24)
F(s)=s

The pdf of s is:

f(s)=ns""1 25)
The mean of this operation is given as:
1
Elsl= — (26)
1+1/n

The max operation favors the maximum value. Ifthe magni- tude

of this value is less than a set threshold, it means thatthe
possibility of experiencing a false positive is very small. Asin the
case of the min operation, here as well the variance approaches
zeroasaresultofdataaggregation:

2

_ 1
Omax B (WFI)W (27)
V. NETWORK

Toinvestigate the scope and usefulness ofa wireless sensor
network for monitoring toxic gases, we deployed 21 sensor

nodesinanopenfieldnexttotheFacultyofComputerScience (TU
Dresden). Fourofthenodesintegrated arraysofammonia
nanosensors, whereas therest were used as intermediate nodes

to forward packets. The network had a grid topology and the
ammonia sensors were placed at each of the four corners ofthe
grid. Furthermore, abasestation atone side of thenetwork
interfaced the sensor network with anearby laptop computer. The
Raspberry Pi boards attached to each of the nodes were
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Fig.3: The difference in the raw values of nine arbitrarily
selected sensors ofan array in the absence of ammonia.

tasked with collecting performance related statistics from the
Zolertia platforms. In addition, they established a local area
network to coordinate the experiments. The sensornodes were
configured to transmit packets in the 2.4 GHzradio bandusing
7 dBm transmission power. Each node transmitted packets at 1
Hz rate, the packets containing the min, max, and average
values reflecting the observations of the 64 on- board
nanosensors. In all, we conducted 100 independent experiments
to evaluate the performance ofthe network.

A. Sensing

During our field deployment three of the gas sensors were not
exposedtoammonia, butoneofthem (Node2)wasplaced nexttoa
bottle(ca. 5 cmaway) containing ammonia. The lead ofthis bottle
was removed for ca. 30 s during each experi- ment. The
experiment took place under normal atmospheric condition
(airflow: ca. 6 L/min, outside temperature: ca. 25°C, relative
humidity: ca.25%).

The nanosensors exhibited an appreciable difference in their
zero-offset threshold, but in terms of their precision and
accuracy, they were comparatively similar. Fig. 3 shows the
outputs of nine arbitrarily selected nanosensors from a single
array in the absence of ammonia. It is worth to mention that even
though the dielectrophoretic deposition process was the same for
all the 64 sensors of an array, the difference in their response was
likely due to the presence of small unavoidable defects at the
microelectrodes [17]. This feature remains, by and large, stable,
though, inthe presence ofammonia, ascanbe seenin Fig. 4.

Fig. 5 illustrates the difference in the raw values between the
min and the max operations of the four nodes during the
monitoring of ammonia for a sampling duration of 200 s. In each
sampling interval a node performs the two operations by
comparing the outputs of all the sixty-four nanosensors. For
reasons we have not yet established, several sensors reported
suspicious outputs which were not included during data ag-
gregation. Except Node 2, all the others were monitoring a
normal condition (the absence ofatoxic gas).
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Fig.4: The difference in the raw values of nine arbitrarily
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Fig.5: Comparison ofraw values of min and max operations. Except

Node 2, theothernodes were notexposed toammonia.

When regarded separately, the samples of both the
min and max operations show appreciable fluctuations as do the
raw data from the sensors, but the magnitude of fluctuations tend
to disappear when the outputs of the two operations are
compared, as can be seen in Fig. 6, where we plotted
the histograms ofthe aggregated data. This feature affirms the
theoretical assertion that the variances of both operations
approach zero as the number of sensors increases, regardless of
the statistical characteristics of the outputs of the individual
Sensors.

B. Routing

Multi-hopRoutingissupportedintwosteps. Inthe firststep, the
topology of the network is established and representedby
abinary adjacency matrix. How this is accomplished is explained
in detail in [25]. As a summary, in this step, nodes discover and
keep a list of their neighbours (including their hop-distance). For
the size of our network, this step takes ca.
1.6 s.

Avoiding congestion and minimising packet loss is critical for
toxic gas detection. To achieve these goals, firstly, a node uses
unicast communication to send a packet to exactly one
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Fig. 6: Comparison of the histograms of the min and max
operations. Only Node 2 was exposed to ammonia.

neighbour which is at least one-hop nearer to the sink. This takes
place aslong as packets are duly acknowledged. Ifa packetislost,
anode attempts to retransmit it twice; if both attempts fail, then it
broadcaststhe packettoallitsneighbours and any receiving node,
provided itis either the same hop- count away from the sink as the
transmitter or at least one  hop nearer to the sink, forwards this
packet. Secondly, nodes perform local comparison before they
decide to include a piece of data in a packet they transmit.
The comparison consists of (i) freshly received values from
neighbours, (ii) freshly computed local values, and (iii) values
from the previous round.Ifthenewminisnotlessthanthemin from
theprevious round, the node does not forward it. If, however,
a new min is observed, then this will be transmitted along with
the ID of the node which reports it. In addition, the node locally
stores this value, regardless of where it originated. The same is
true for the max and the average values. Algorithm 1 summarises
this process for the min and max operations. An exception
to this rule is an emergency situation. An emergency situation is
flagged when a node locally detects that a concentration
threshold is crossed, in which case the packet is directly
forwarded towards the sink.

Local comparisons take place at 1 s interval. The short- range
radio supported by the CC2538 System-On-Chip has a nominal
transmission rate of 250 Kbps, but it rarely achieves this rate. If
we assume amodesttransmission rate of 100 kbps, thetransmitter
needsca.2.5mstotransmitapacketof28 bytes (thelongestpacket
containingamin,max,andaveragevalues). If neighbours require
on average 10 ms to win the medium — in the Time Slotted
Channel Hopping (TSCH) protocol, the timeslot for the Zolertia
platformis set 10 ms [26] —, then an intermediate node can collect
upto 80 packets during the 1 sinterval. In other words, the interval
islong enough to collect packets fromneighbours.

C. LinkQuality

The quality of wireless links varies appreciably. We ob- served
this phenomenon in different ways. Firstly, we mea- sured the
background noise at each node both before a packet
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Algorithm 1: Processing min and max

Input :Receivedpackets,local min,local max, past

min, past max: p, Im, lx, Mr-1,Xr-1
Output: Transmitted packet: pu
Aggregate min:
me «<— min(/m,p.m)
if m: <m:-1 then

Me—1 <My
Ptx. M <—Mm-<

else

| Po.m—NULL
end
end
Aggregate max:
Xr <— max(/x p.x)
if x: >xz-1 then

Xr—-1 <Xt
Pix. X <— Xt

else

| pox<—NULL
end

end

was transmitted and after a packet was received. Secondly, we
measured the RSSIvalues ofincoming ACK packets. Thirdly, we
evaluated the statistics of successively received and lost packets
to examine short-term link quality fluctua- tions. Fourthly, we
compared the total number of packets a node successfully
received with the total number of packets transmitted to the same
nodeto determine long-term link quality fluctuations.

The IEEE 802.15.4 specification [27] defines a total of 16
channels in the 2.4 GHz band (numbered from 11 to 26). Each
channel has a bandwidth of 2 MHz and is separated from
neighbouring channels by a guard-band of 5MHz. Some of these
channels overlap with other ISM band channels and can be
affected by nearby ISM networks (such as the LAN we
established to monitor our experiments and other nearby WiFi
networks)[28]. Therefore, notallchannelsareequally affected by
surrounding noise and interference [29].

The background noise at the four gas sensors remained, by and
large, stable in all the 16 available channels throughout our
experiments. Fig. 7 displays the histogram of the background
noise for Channel25, which wasthebest for oursetting. More than
95% ofthe time, it was below -90 dBm. Experiment resultsreveal
that the Zolertia platform is capable of receiving a packet
successfully if the RSSI value is above -90 dBm [30].
Consequently, the packet loss our network suffered was mainly
due to packet collision or interference coming from other
sources.

The packet success rate depends on the network traffic den-
sity and the surrounding cross technology interference (CTI). In
this regard, we observed that the 16 available channels
experienceddifferentpacketlosses. Todemonstratethisaspect, we
flew an Unmanned Aerial Vehicle (UAV) during three of our
experiments while the ground nodes transferred packets to the
base station. Fig. 8 displays the performance of three
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Fig.8: Comparison ofthe total number of packets transmitted and
the total number of packets received by the base station. The
transmitters were the four nodes integrating the ammonia sensor
arrays. The two nodes farthest away from the base station were
each four-hop away and the two nodes nearest to the base
station were each two-hop away. Top: Channel 25. Middle:
Channel 26. Bottom: Channel 24.

adjacent channels (Channels 24, 25, and 26). The statistics we
used to generate the histograms were based on the
transfer of 2000 packets. As can be seen, Channel 25 performed
best with more than 95% of the packets transferred successfully
over the multihop links. The other channels, however, suffered a
considerable packet loss on account of the CTI generated by the
remote controllerofthe UAV.

D. End-to-EndLatency

In order to measure the response time of the system, we setup a
threshold of 40% relative resistance change (correspond- ing to
ca. 5 ppm of ammonia) to trigger an alarm. Each node first
aggregated the data from the sensors and then transmitted the
resultat 1 Hz rate. The system’s response time consists of
(1) thepackettransmissionend-to-endlatency (whichdepends on
therelativedistance ofthenodes fromthebasestation)and
(2) the time at which the nodes detect an interesting

event.

L

1000
750 H -
500 i
250

Fig. 10: The average end-to-end packet transmission latency of
the four sensor nodes integrating the gas sensor arrays.
The statistics were generated based on the reception of 2000
packets. The two left bars correspond to the nodes which were 4-
hop away from the base station, whereas the two right bars
correspond to the nodes which were 2-hop away from the base
station.

Since we exposed only one of the nodes (Node 2, which was 2-
hop away) to a concentration of ammonia due to safety concerns,
we haveto evaluate these two aspects separately. Fig. 9 shows the
response of Node 2 to the concentration of ammonia to which it
was exposed. (In plotting the response time of the nanosensor, we
included a portion of raw data published elsewhere [31]. In the
previous publication the focus was on the overall response time
ofasysteminvolving aUAV,amobilerobot, a wireless sensor
network, and a middleware. The size of the network was
significantly smaller compared to the present case (5 vs 21) and
the performance of the network was not analysed in detail.
However, since the sensors’ response time is independent of the
network size or structure, including the response time of multiple
experiments increases the statistical significance of the whole
data.). The node needed ca. 100 s to cross the set threshold (based
onthe expected value of the min operation, as discussed in Sec.
Iv-
B)®. Compared to commercially available ammonia sensors
based on electrical readouts (a response time of ca. 2 to
3min for 25-30 ppm concentration [32]), the response
time

SWe suspect that the actual response time of the sensor is smaller, but

imperfect experimental conditions might have led to this observation.
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is significantly small. Recently, Maity et al. [33] reported a paper
electronics based solid state ammonia sensor with a response
time of ca. 100 s for a sensitivity threshold of 10 ppm, which
suggests that a single node responds with a high level of
performance compared tothe state of the art.

The average end-to-end communication delay for Node 2 was
ca. 530 ms. Node 1, which was the same hop-away from the base
station, experienced approximately the same average end-to-end

latency. The other farther away nodes, Node 3 and Node
4, experienced an end-to-end latency of ca. 650 ms on
average. Fig. 10 shows the box plot of the end-to-end
communication latency for the 4 nodes. The green dash lines
inthe middlerepresent the mean value and the orange lines, the
median.

VI. EVALUATION

In Section Il we demonstrated a wide range of applications that
can be supported by wireless sensor networks monitoring
dangerous or toxic gases. To evaluate the performance of our
network we adopted the approaches used by Perez etal. [14] and
Cheung etal. [8], in that we tested the reliability of the network in
terms of (1) packet loss and end-to-end latency and (2) the
response time of the entire system in the presence of a perceived
danger. Packet loss and end-to-end latency are not aspects of the
gas sensors and can be tested without the need to expose themtoa
concentration of a gas. The system’s response, however, requires
exposing the system to anactual concentration ofa gas.

A. PacketlLoss

Our experience with packet loss is similar to that of Perez et
al. and Cheung et al. The difference is that they did not evaluate
the performance of all the available channels, whereas we
evaluatedalltheavailablechannels. Aswedemonstratedin Fig. 8,
the link quality was not the same for all the channels. Since the
IEEE 802.15.4 communication band overlaps with other ISM
bands, such as the ones used by wireless local area networks, the
possibility of experiencing interference in the lower-end of the
spectrum is high. As a result, in the literature Channel 26 is often
favored for wireless sensor networks [34]— [36]. Our experience,
however, suggests that this channel, too, can be affected by a
strong cross technology interference. In all our experiments
Channel 25 was the best. This suggests that dynamic channel
selectionisrequired to achieve the bestperformance.

B. Latency

Perez et al. achieved an end-to-end latency of 30 to
40 ms. Compared to what we achieved (ca. 530 to 650
ms), their performance appears to be impressive. But we
need to carefully examine the deployment settings. Their
network consisted only of 7 nodes, whereas ours consisted of 21
nodes. Secondly, they sampled the network at 1 m interval,
whereas we sampled ours at 1 s interval. Therefore, the
data traffic in the network for our case was considerably higher
than theirs. This explains the relatively large amount of delay we
experienced.
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1 Hzrate. Blue: Packet forwarding is event-based.

Similarly, Cheung et al. reported a system response time
of 1-2 s, while the system response time for our case (the
summation of the end-to-end latency and the time the node
needed to detect the presence of ammonia) is ca. 101 s. The
difference is considerable. One of the reasons for this is the
difference in the network size. The network of Cheung et al.
consisted of only 5 nodes and only one node communicated ata
time. Moreover, our data aggregation strategy is more reliable,
because Cheung et al. relied on a snapshot query (a single sample
sufficed to fire an alarm), which is unreliable and liable to false
positives an falsenegatives.

Having said this, the overall latency we experienced is
well above the 60 s upper limit many chemical industries
recommend to fire an alarm. Compared to the response time of
the nanosensors, the contributions of the communication latency
and the data aggregation are negligible (100 s vs. < 1s
). This means that the response time of the nanosensors needs
improvement and we are currently working on this aspect. This
said, recently, we tailored the CNT surface towards selective
sensingofhydrogensulphide,achievingaresponsetimebelow the
required threshold of 60s[17].

C. PacketForwarding

Another aspect we investigate is the packet forwarding task of
intermediate nodes. Assuming a child node communicates
exactly with one parent node, in a regular routing protocol,
anode d-hops away from the sink receives ca. (dmax — d)p
packets and forwards (dmax —d+1)p packets inasingleround
(where dmax is the farthest hop in the grid and p is the size of an
ordinary data packet). These figures suggest that the packet
transmission cost of the intermediate nodes near the sink
increases linearly. For our case, packet forwardingisevent-
based. Furthermore, the evaluation of events occurs at two
stages: locally and at an intermediate node, which
significantly reduces thenumber of packets an intermediate node
forwards to the sink. Fig. 1 1 compares the number of packets
intermediate nodes forward on average in the two scenarios.
The result was obtained analytically; the probability of events is
takento be exponentially distributed.
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VIl. CONCLUSION

In this paper we proposed a wireless sensor network for
monitoring toxic gases. We developed arrays of nanosensors for
monitoring ammonia and integrated them into wireless sensor
nodes having communication, processing, and power
subsystems.

We carried out a field deployment with a network of 21 sensor
nodes. The network was forming a grid topology. The network
was tasked with monitoring ammonia and the nodes were
sampled at 1 Hz rate. The outputs of the arrays of sensors were
locally aggregated using min and max operations and the
packets were transferred to a central base station using multihop
communications. Four of the 21 nodes integrated arrays of
nanosensors, whereas the rest were employed as intermediate
nodes. The four nodes with the ammonia sensors were placed at
the four corners of the grid. We placed a bottle containing
ammonianext to one ofthenodesand removed thelid forca.30
sin each experiment. We seta40% change inthe total resistance
of the nanosensors as the threshold to detect a concentration of
ammonia which is large enough to trigger an alarm. The node
required approximately 100 s to reach ata decision and trigger an
alarm. We needed additional 700 ms to transfer a packet to the
central station. Overall, with the selection of the best channel, the
packeterrorrate of the network was below 5%.

Our future aim is to minimize the system’s response time
which, at presence, is higher than the limit prescribed by many
chemical industries (whichis605s).
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