

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

583

Verifying the REST API Security of Cloud Services

1 B. Keerthi Reddy, 2 V. Naveen Kumar, 3 K. Nikhil, 4 M. Gopi Priya, 5 P. Nikith, 6 Mr. Dandu

Srinivas, 7Dr. C. Sasikala

1,2,3,4,5UG Scholar, Dept. of CS, Narsimha Reddy Engineering College, Maisammaguda,

Kompally, Secunderabad, India.

6 Assistant Professor,Dept.of CSE, Narsimha Reddy Engineering College,

Maisammaguda, Kompally, Secunderabad, India.

7 Professor, Dept. Of EEE, Narsimha Reddy Engineering College, Maisammaguda,

Kompally, Secunderabad, India.

Abstract—

These days, REST APIs are the norm for

programmatic access to most online and cloud

applications. In this article, we will look at how a

malicious actor may take over a service by taking

advantage of security holes in its REST API. In

order to capture the desired qualities of REST APIs

and services, we provide four security principles.

 To further automate testing and detection of rule

violations, we demonstrate how to add active

property checks to a stateful REST API fuzzer. We

go over several efficient and modular ways to create

such checks. We describe the security

consequences of the new vulnerabilities discovered

in several production-ready Azure and Office 365

cloud services using these checkers. We have

resolved all of these issues.

 Topics: REST APIs, cloud computing, security, and

test generation

I. INTRODUCTION

A new era of cloud computing is dawning. Cloud

platform providers such as Amazon Web Services [2]

and Microsoft Azure [13] have deployed thousands of

new cloud services in the past few years. Their

customers are "digitally transforming" their

businesses by modernizing their processes and

collecting and analyzing all kinds of new data.

The majority of cloud services may now be accessed

programmatically using REST APIs [9]. Built on top

of the widely-used HTTP/S protocol, REST APIs

provide a standard method to create, monitor,

manage, and remove resources in the cloud.

Swagger, formerly known as OpenAPI, is an

interface-description language that cloud service

developers may use to describe their REST APIs and

provide sample client code [25]. A Swagger

specification describes how to contact a cloud service

using its REST API, including what queries the

service can accept, what replies may be received, and

the response format.

How secure are all those APIs? Today, this question

is still largely open. Tools for automatically

evaluating cloud services via their REST APIs and

assessing whether these services are dependable and

safe are still in their infancy. Some tools available for

testing REST APIs collect live API communication,

and then analyze, fuzz, and replay the data with the

hope of detecting flaws [4], [21], [6], [26], [3].

Recently, stateful REST API fuzzing [5] was

suggested to precisely test more deeply services

exposed behind REST APIs. Given a Swagger

specification of a REST API, this technique

automates IN order to comprehensively exercise the

cloud service deployed behind that API, with the

purpose of identifying unhandled exceptions (service

failures) that may be identified by a test client as

“500 Internal Server Errors”. While that effort

appears promising and reports numerous new issues

detected, its scope is constrained to the detection of

unhandled exceptions.

In this work, we offer four security principles that

capture desirable aspects of REST APIs and services.

• Use-after-free rule. A resource that has been deleted

must no longer be accessible.

• Resource-leak rule. In order to avoid any potential

consequences in the backend service state, a resource

that could not be generated successfully should not

be available.

• The rule of resource hierarchy. No two parent

resources can have access to the same child resource.

The rule pertaining to user-namespaces. Nobody else

should be able to access resources made in one user's

namespace.

As we'll see in the section below, an attacker could

exploit a breach in these rules to launch an elevation-

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

584

of-privilege attack, an information disclosure attack,

or a denial-of-service attack—all of which could lead

to the hijacking of cloud resources or the bypassing

of quotas. Here we demonstrate how to add support

for testing and detecting rule violations in a stateful

REST API fuzzer. We establish an active property

checker for every rule that does two things: (1) finds

rule violations and (2) generates new API requests to

test them. Thus, in addition to looking for rule

violations, each checker also tries to break its own

rule.

To ensure that these checkers do not conflict with one

another, we go over possible modular

implementations. We also go over ways to efficiently

implement each individual checker, by removing

likely-redundant tests whenever possible, because

each checker creates new tests, on top of an already-

large state space exploration.

By design, these checkers can uncover security rule

violations that baseline stateful REST API fuzzing

misses (beyond the "500 Internal Server Errors").

Several production Azure and Office 365 cloud

services had new bugs discovered using these

checkers. By identifying more kinds of errors at a

small incremental testing cost, security checkers raise

the utility of REST API fuzzing.

Here are some important points that this paper brings

up:

Here, we lay out the groundwork for active checkers

by defining rules that describe the security properties

of REST APIs. We then create and deploy these

checkers to test and detect rule violations. Finally, we

provide comprehensive experimental results that

evaluate the effectiveness and performance of these

active checkers on three production cloud services.

We discovered new vulnerabilities in various

production Azure and Office 365 cloud services using

these scanners, and we talk about the security

implications of these vulnerabilities.

The rest of the paper is organized as follows. In

Section II, we recall background information on

stateful REST API fuzzing. In Section III, we

introduce rules that capture desirable properties of

secure REST APIs and present active checkers to test

and detect violations of these rules. In Section IV, we

present experimental results with active checkers on

production cloud services. In Section V, we discuss

new bugs found by these checkers and their security

implications.

In Section VI, we discuss related work, and we

conclude the paper in Section VII.

II. STATEFUL REST API FUZZING

Section III introduces security property checks that

may be used as expansions of this fundamental

approach; in this section, we review the notion of

stateful REST API fuzzing [5].

 When it comes to cloud services, we think REST

APIs are the way to go.

 Requests are messages sent by a client software to a

service, while replies are messages received back.

This kind of communication is carried out using the

Hypertext Transfer Protocol, Secure. There is a

unique HTTP status code (2xx, 3xx, 4xx, or 5xx)

assigned to each answer.

 One example of a specification language for REST

APIs is Swagger [25], which is also called OpenAPI.

The Swagger standard details the REST API access

to a service, including the types of queries that the

service may process, the possible answers, and the

format for each.

 Using a limited number of queries, we characterize a

REST API. Every request r is a tuple that contains

the following elements: an authentication token (a),

the kind of request (t), a resource path (p), and the

request content (b).

 There are five possible options for request type t in

REST: PUT (create or update), POST (create or

update), GET (read, list or query), DELETE (delete),

and PATCH (update). One way to identify a cloud

resource and its parent hierarchy is by looking at its

resource path, which is a string. For most cloud

resources, p is a non-empty sequence that matches

the regular expression

(/_resourceType_/_resourceName_/)+, where

resourceType is the type of the resource and

resourceName is the name of the individual resource

of that kind. In most cases, the request attempts to

create, access, or delete the particular resource that is

listed last in the route. Additional parameters and

their values may be included in the request body b.

These parameters can be necessary or optional,

depending on the request.You need to include three

resource names—a subscriptionID, a

resourceGroupName, and a zoneName—in the route

of this GET request, and the body (at the end,

represented by { }) is blank.

 While DELETE requests remove resources from an

API, PUT and POST requests usually add new ones.

A producer for the resource type T is a request whose

execution results in the creation of a new resource of

that kind. An identifier, or "id," is a representation of

a freshly formed resource. We sometimes refer to

resources as dynamic objects because of the way they

are formed. An example of a consumer request

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

585

would be one that includes a resource name of type T

either in its route or content. From time to time, we

shall talk about the dynamic object type by its

resource name, which is type T. No new resources

are created by the GET request illustrated in the

Azure DNS zone example; instead, three resources of

the types subscriptions, resourceGroups, and

dnsZones are consumed.

 Users may define a limited finite collection of

specified values—called fuzzable values—to be

randomly picked within resource routes or request

bodies of individual requests. In the body of a

request, a user may indicate that an integer value may

be anything from 0 to 10,000,000. Fuzzing

dictionaries include such sets of values. The

rendering of a request indicates the mapping of each

fuzzable value to a single concrete value taken from

its fuzzing dictionary, given that the request contains

fuzzable values. With n fuzzable values that may

take on k potential values each, the number of

possible renderings is nk. When the matching

request is executed and provides a valid response

(specified in the next paragraph), we say that the

rendering is legitimate. The fuzzing dictionaries and

values that users choose to fuzz are entirely up to

them.

 A directed graph with nodes representing service

states and edges representing transitions between

them is what we call a service's state space.

Executing a single request r from a given state s of

the service results in a successor state s_, which is

represented by the expression s r→ s_. If a request r

in state s prompts a 2xx answer, it is legitimate; if it

prompts a 3xx or 4xx response, it is invalid; and if it

prompts a 5xx response, it is a problem.

 The state space of the service that can be reached

from an initial state when no resources exist may be

explored by performing sequences of requests. When

this kind of investigation tries to access service states

that can only be reached by sending out a series of

queries, it is being stateful:

 The resources used in later requests in the same

sequence might be generated by previous ones,

allowing for more requests to be executed and deeper

service states to be reached.

 Several search techniques, such as a systematic

breadth-first search or a random search, may be used

to explore state space [5]. Due to the fact that request

sequence length is not limited, sets of alternative

renderings may be extremely vast, and the service

under test is seen as a blackbox, state spaces can be

huge—if not infinite. The good news is that it could

be enough to only partially explore the state space to

find intriguing issues. When we obtain a 500 HTTP

status code after running a request sequence, we

consider it a bug. It is safer to address these issues

rather to risk a live event with unknown effects.

Unhandled exceptions, such as "500 Internal Server

Errors," are caused by unexpected input request

sequences and may corrupt the service state and

severely harm its health.

 We will sometimes refer to executions of request

sequences as test cases in the following, and

executions of single requests as tests. The primary

mechanism behind stateful REST API fuzzing is the

basic state-space exploration technique discussed in

this section.

III. SECURITY CHECKERS FOR REST APIS

Active checks for REST API security rules are

defined and described in this section. We begin with

the four REST API security rules that are introduced

in Section III-A. We lay out the steps to build active

checkers for testing and finding security rule

breaches in Section III-B. There is just one kind of

security rule violation that each active checker

targets. Section III-C delves into the topic of modular

combination, specifically looking at how each

checker may be used in conjunction with the primary

driver of stateful REST API fuzzing and with each

other. We provide a novel search technique for

scalable test creation with property checkers in

Section III-D.

Section III-E explains how to classify checker

breaches so that the user isn't notified of the same

issue more than once.

Rule No. A. – Security

In order to capture the desired qualities of REST

APIs and services, we provide four security

principles. We provide an example for each rule and

talk about the security implications of it. A

combination of manual penetration testing and root

cause analysis of customer-visible problems led to

the discovery of actual defects in deployed cloud

services, which served as the basis for all four

criteria. Later in Section V, we will provide examples

of new, previously undiscovered problems that we

discovered as rule violations in production Azure and

Office 365 services that were already deployed.

The rule of use after free. After deletion, a resource

can no longer be accessed. That is to say, any further

operations (such as read, update, or delete) on a

resource that has been successfully deleted will

always fail.

If you want to remove the account associated with

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

586

user-id1, for instance, you may do that by sending a

remove request to the URI /users/user-id1. After that,

all further attempts to use that ID must fail and return

a "404 Not Found" HTTP status code.

When a removed resource is still available via the

API, it is considered a use-after-free violation.

Seriously, this can't take place. The service's backend

state might be corrupted and resource quotas could be

bypassed due to this obvious fault.

A regulation about the loss of resources. An

unsuccessfully produced resource must not only not

be available, but also not "leak" any related resources

in the backend service state. That is to say, if a 4xx

error occurs as a result of an unsuccessful PUT or

POST request to create a new resource, then all

further operations on that resource will likewise fail.

In addition, the user should not experience any

unintended consequences related to the successful

generation of that resource type in the backend

service state. To illustrate, a resource that was unable

to be established cannot be used to meet the user's

service quotas, and the user must be allowed to reuse

the name of the resource.

For instance, in order to generate the URI /users/user-

id1 with a faulty PUT request, a 4xx answer is

required. It is required that any future attempts to

access, modify, or delete this URI also fail.

When a resource that was not correctly generated yet

"leaks" some side-effect in the backend service state,

it is considered a resource-leak violation. Example: a

later GET request lists the resource, but a DELETE

request fails to remove it. Attempts to recreate the

resource also fail, and a "409 Conflict" answer is

returned. Never let this happen since it might have

unforeseen effects on the service's performance

(because of excessively big database tables, for

example) or the capacity of that resource type

(because additional resources can't be added because

resource quota limitations have been surpassed).

Resource-hierarchy rule. No two parent resources

may have access to the same child resource. Put

simply, when a resource is successfully created from

another resource and marked as such in service

resource paths, the child resource must not be

accessible when the parent resource is replaced with

another resource. This means that the child resource

cannot be read, updated, or deleted.

For instance, if you create users user-id1 and user-id2

using POST requests to URIs /users/user-id1,

/users/user-id2, and /users/user-id1/reports/report-id1,

and then add report report-id1 to user user-id1, then

you can't access report-id2 from URI /users/user-

id2/reports/report-id1. This is because, according to

the resource-hierarchy rule, report report-id1 belongs

to user user-id1 but not to user-id2.

The absence of a parent-child link between two

resources, even when both originated from the same

parent, is a resource-hierarchy violation.

When this kind of breach is feasible, an adversary

may be able to provide an illegal parent object

identity.

(for example, user-id3), and then take control of an

illegal child object (for instance, report-id1) by

reading or writing to it. It is imperative that no bugs

involving resource hierarchy ever occur; doing so

could put users in harm's way.

Policy regarding user-namespaces. You can't have

resources from one user namespace available to

resources from another. The user token used to

interact with the API (e.g., OAUTH token-based

authentication [18]) defines the user namespaces in

the context of REST APIs.

For example, after submitting a POST request to

build URI /users/user-id1 using token token-of-user-

id1, resource user-id1 must not be accessible using

another token token-of-user-id2 of another user.

A user namespace violation occurs when a resource

created within the namespace of one user is

accessible from within the namespace of another

user. If such a violation ever occurs, an attacker

might be able to execute REST API requests using an

unauthorized authentication token, and perform

unauthorized operations on resources belonging to

another (victim) user.

B. Active Checkers

We implement active checks for the rules provided in

Section III-A. An active checker monitors the state

space exploration performed by the main driver of

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

587

stateful REST API fuzzing and suggests new tests to

assert that specific rules are not violated. Thus, an

active checker augments the search space by

executing new tests targeted at violating specific

rules. In contrast, a passive checker monitors the

search performed by the main driver without

executing new tests.

We design active checkers following a modular

design based on two principles:

1) Checkers are independent from the main driver of

stateful REST API fuzzing and do not affect its state

space exploration.

2) Checkers are independent from each other and

generate tests by analyzing the requests executed by

the main driver, excluding those executed by other To

make sure that the first principle is followed, we

make sure that all the checks are executed once the

main driver finishes running a new test case. As for

the second principle, we make sure that checkers

don't interfere with one other and work on separate

test cases by ordering them according to their

semantics (we'll get into this further later on). The

next sections discuss the implementation of each

checker and provide improvements to reduce the

expansion of state spaces.

Checker for use after free. In Figure 1, you can see

the use-after-free rule checker's implementation in

notation similar to Python. After the main driver

executes a DELETE request (see Figure 4), the

algorithm is called and takes three inputs: a sequence

of requests (seq of requests), the global cache of

dynamic objects (global_cache), and the set of all

available API requests (reqCollection). The global

cache contains the most recent object types and ids

for the dynamic objects created so far. checkers.

Line 5 retrieves the kinds of the dynamic objects

consumed by the last request, and a temporary

variable named target_obj_id is created to record the

id of the last object type. We take the most recent

type in req_object_types as the one that was really

removed, even if the last request could have

consumed many types of objects. For instance, a

DELETE request to the following URI:

/users/userId1/reports/reportId1 consumes two sorts

of objects: reports and users, but it only deletes

reports. Following this initial setup, the reqCollection

is iterated over by the for-loop (line 12), which skips

requests that do not consume the target object type

(line 14).

The method EXECUTE (line 19) uses the recovered

target object id from the global cache of dynamic

objects (line 17) to execute request req once it finds a

request, req, that consumes the target object type. In

order to execute a request, the EXECUTE function

checks global cache for object identifiers, therefore

the target object id is restored there several times. A

use-after-free violation will be triggered if any of

these requests are successful (see to Section III-A).

In order to control the amount of extra tests that are

created for each request sequence, the inner loop may

end after one request for each target object type is

detected (line 21), which is optional. In the absence

of an exhaustive value for the mode variable, this

option is invoked. In Section IV, we provide

comprehensive experimental findings on the effects

of this optimization.

Detector of resource abuse. Figure 2 depicts the

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

588

resource-leak rule tester. The three parameters used

by the method are identical to those of the use-after-

free checker. This checker processes request

sequences carried out by the primary driver, whose

most recent request resulted in a response with an

incorrect HTTP status code (see to Figure 4 for

reference). The first thing the algorithm does is find

out what kinds of dynamic objects were created by

the previous request (target_obj_types) and the full

series (seq_obj_types) (lines 4 and 5). Three layered

for loops implement the algorithm's core logic. Line 6

of the first loop contains an iteration of all object

types that were generated by the previous request. On

line 7, there is a second loop that iteratively checks

the object ids that were "guessed" for the kind of item

that returned an incorrect HTTP status code. You may

provide an object type to the GUESS function, and it

will return a list of probable object ids that fit that

type but were unsuccessfully constructed.

As an example, the checker will try to run any

request that uses the object type "x" and state it fails

when using the object id "objx1" if the creation of a

dynamic object with object id "objx1" and object type

"x" fails via the API (based on the answer obtained).

In order to prevent an explosion in the number of

further tests, the total number of estimated values per

object id is restricted to a parameter value that the

user provides.

Line 8 temporarily adds an object-id value that was

guessted to the global cache of dynamic objects that

were appropriately created.

Based on the object types generated by the current

sequence, the inner loop (line 9) iteratively searches

through the requests in reqCollection for those that

are executable and consume the specified target

object type. On line 17, the "guessed" object ids that

were previously stored in the global cache are used to

perform these queries. In this manner, the algorithm

attempts to

either claims that the provided request sequence does

not include a resource-leak violation (line 18) or

triggers one (see Section III-A).

When one request for each estimated item is

identified, the inner loop (optionally) finishes (line

19), which limits the number of subsequent tests

created for each input sequence. Section IV assesses

this optimization.

Checker for resource hierarchy. Figure 3 shows the

resource-hierarchy rule checker in action. A sequence

of requests (seq) representing the most recent test

case run by the primary driver and the current global

cache of dynamic objects (global_cache) are the two

inputs that the algorithm takes into account. Line 6

indicates the object types eaten by the most recent

request in the current series, and line 7 indicates the

object types consumed by all requests in the sequence

prior to the previous request. This information is

recorded by the algorithm as target_obj_types.

Following that, on lines 12 and 13, the identifiers of

the objects that were used just by the last request are

kept locally. By running requests that attempt to

access them using incorrect parent objects, the

checker will try to breach the hierarchy of these child

objects. With that in mind, the present sequence is

run until the final request (but not including it) at line

15. Lastly, on lines 18 and 19, the old child object ids

are restored. Then, on line 20, the final request is

completed using both the new parent object ids and

the old child object ids. The restored child object ids

do not belong to these parent object ids.

In this approach, the program either claims that the

requested sequence does not violate the resource

hierarchy (line 21) or attempts to induce a resource-

hierarchy violation (see Section III-A).

Namespace and user verification tool. Space

limitations prevent us from providing a

comprehensive description of this checker. To

summarize, this checker tries to use a different

authentication token to re-execute the legitimate last

request of each test case that the main driver has

performed. If this is successful, an attacker using a

different authentication token might potentially take

control of the objects used in the previous request,

leading to the reporting of a user namespace violation

(see to Section III-A for further information).

C. Making All Checkers Into One

Here is how the four checkers mentioned before are

put into action. The code in Figure 4 is called

whenever the stateful REST API fuzzer enters a new

state, as stated in Section II. This code implements

the state-specific checks in response to the most

recent request. We will now go over some key

features of these checkers and how they work

together.

Contribution beyond stateful REST API fuzzing. By

doing more tests and checking for replies other than

5xx, the checkers expand the state space and may

identify unexpected 2xx responses as rule-violation

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

589

errors. This extends the core driver of baseline

stateful REST API fuzzing. So, it's evident that they

improve the main driver's bug-finding skills. They

can detect flaws that the main driver couldn't identify

on its own.

Active property checking vs passive monitoring. As

said before, the checkers we create provide more test

cases to the search area the primary driver uses to

trigger and identify particular rule violations. But

without actually running those extra tests, it's quite

unlikely that passive runtime monitoring of these

rules alongside the primary driver will pick up on

rule breaches. Passive monitoring alone is unlikely to

catch use-after-free and resource-leak rule breaches

since the primary driver's default state space

exploration probably won't try to re-use deleted

resources or resources after a failure, respectively.

Passive monitoring would also miss resource-

hierarchy and user-namespace rule breaches as the

baseline main driver doesn't try to swap object IDs or

authentication tokens, respectively. That is to say, in

comparison to non-checker tests, the extra test cases

produced by the checkers are not superfluous; rather,

they are essential for discovering rule violations.

The checkers work in tandem with one another. Our

four defined checkers are mutually supportive; that

is, due to the fact that their respective preconditions

are incompatible, no two of them can ever provide

new tests that are identical to one another. To begin,

request sequences that conclude with a DELETE

request activate no other checkers beyond the use-

afterfree checker. Second, if the most recent request's

HTTP status code is invalid, just the resource-leak

checker will be engaged. Furthermore, for request

sequences that do not conclude with a DELETE

request and have valid renderings, the resource-

ownership checker is the only checker that is

triggered. Finally, the user-namespace checker

obviously adds another orthogonal dimension to the

state space as it ran tests with an attacker token that

was distinct from the authentication token used by

the main driver and all the other checks.

D. Checkers Search Methods

For stateful REST API fuzzing, the breadth-first

search (BFS) is the primary search technique for test

creation in the search space specified by all

conceivable request sequences [5]. When it comes to

grammar, this search method has you covered. It

covers every conceivable request and every potential

request sequence up to a certain length. Nevertheless,

BFS's search performance degrades with increasing

sequence length due to the often huge search area it

explores. Hence, BFS-Fast was implemented as an

optimization. In contrast to BFS, which adds each

request to every request sequence of length n, BFS-

Fast only adds each request to one request sequence

of length n whenever the search depth grows to a new

value n + 1 [5]. Full grammar coverage is only

provided by BFSFast for individual requests and not

for request sequences of a certain length; this means

that not all conceivable requests may be explored.

A subset of all potential request sequences is

explored by BFS-Fast, which allows it to scale better

than BFS.

Sadly, this reduces the amount of infractions that the

security auditors can actively verify. We provide a

novel search method, BFS-Cheap, to overcome this

restriction.

In contrast to BFS-Fast, which aims to cover all

potential request renderings at every stage, BFS-

Cheap follows the opposite trade-off and instead

investigates all possible request sequences for a

certain sequence length, but not with all conceivable

renderings.

In particular, BFS-Cheap handles the following

inputs: a collection of requests (reqCollection) and a

set of sequences (seqSet) of length n:

For every sequence seq in seqSet, add every request

from reqCollection to the end of seq, run the new

sequence taking into account all potential renderings

of req, and add no more than one valid and one

incorrect rendering to seqSet.

The use-after-free, resource-hierarchy, and user-

namespace checking all rely on correct renderings,

but the resource-leak checker relies on faulty

renderings.

For an experimental assessment, see Section IV-B;

BFS-Cheap is therefore a compromise between BFS

and BFS-Fast.

To prevent a huge sequenceSet, it investigates all

potential request sequences up to a certain length

(similar to BFS) and adds no more than two

additional renderings to each sequence (similar to

BFS-Fast). With two additional renderings for each

sequence examined, all the security requirements

specified in Section III-A may be actively checked,

and the number of sequences in seqSet remains

manageable even as the length of the sequence rises.

Keep in mind that the "cheap" suffix is derived from

the fact that BFS-Cheap is a cost-effective variant of

BFS that adds no more than one acceptable rendering

to the BFS "frontier" setSeq for every new sequence.

As a result, less resources are generated compared to

when all possible interpretations of each request

sequence are investigated, as in BFS. Consider a

request description that specifies 10 distinct kinds of

a single resource type using an enum type. After

producing a resource of a single flavor, BFS-Cheap

will cease further resource creation. On the other

hand, BFS and BFS-Fast will generate 10 identical

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

590

resources but with ten distinct flavors.

Section E. Bug Hole Filling

We describe the bucketization method that is used to

put together comparable infractions before we talk

about real-world instances of violations identified

using active checkers. "Bugs" are rule infractions

while discussing active checkers. You can trace each

problem back to its specific request sequence. We

generate per-checker bug buckets using the following

approach, given this property:

When a new issue is discovered, calculate all

nonempty prefixes in the request sequence that

causes

beginning with the tiniest insect. Put the new

sequence into an existing bug bucket if the suffix is

already there. In any case, you'll need to create a

fresh bug bucket for the updated sequence.

We have distinct, perchecker bug buckets since the

failure circumstances are set individually for each

rule, but otherwise, this bug bucketization technique

is identical to the one in stateful REST API fuzzing

[5]. Except for "500 Internal Server Error" flaws,

which may be caused by both the main driver and

checkers, each defect will only be triggered by one

checker for a certain sequence length due to checker

complementarity.

One instance of the new sequence will be added to

the bug bucket of the primary driver or checker that

triggered it, for 500 bugs.

IV. EXPERIMENTAL EVALUATION

Here we detail the outcomes of our trials using three

real-world cloud services. Section IV-A details our

experimental setup and these services. Section IV-B

then compares the three search algorithms outlined in

Section III-D. Section IV-C details the findings,

which include the total number of rule violations

recorded by each checker across all three cloud

services and the effects of different optimizations.

 (A) Experimental Environment

 Experiments were conducted using three anonymous

cloud services, and we provide the results: Azure A

and Azure B are two management services provided

by Azure [13], whereas O-365 C is a communications

service offered by Office365 [16]. All three of these

services have REST APIs that get between thirteen

and nineteen queries. Among the cloud services we

examined, those three stood out due to their size and

complexity, so we decided to focus on them. Section

V summarizes our overall experience with the

various production services that we have tested so

far, which number in the dozen or so.

 There is a publicly published Swagger specification

for every service that is being considered [15]. We

follow previous work [5] by assembling the

specifications of each service into a language for test

creation. Python code that can be executed is used to

encode each grammar.

 All the tests presented here utilized the same syntax

and fuzzing dictionaries for a specific service and

API. The produced representations are not random.

A single-threaded fuzzer, an internet-connected PC,

and a current service membership that grants access

to each service API were used to conduct our fuzzing

studies. There was no need for any additional service

expertise or unique test setup. In the same way as in

[5], our fuzzer incorporates a garbage-collector that

gets rid of dynamic objects that are no longer in use

so that we don't go over our service quota.

 While we test production services that are live and

available to subscribers, we can't see what's

happening behind the scenes of the services we test.

When it gets a response, our fuzzer just looks at the

HTTP status code. The client side initiates all

requests by sending them over the internet to the

specified services, and then parses the results. The

trials described here are not completely controlled as

we have no say over the rollout of these services.

But we ran the same tests many times and got the

same findings each time.

 B. Examining Different Search Methods

 Now we'll take a look at how BFS-Cheap, our new

search technique, stacks up against BFS and BFS-

Fast when it comes to fuzzing actual services using

security checkers. Using Azure A, Azure B, and O-

365 C as our descriptors, we provide the outcomes of

our trials with three different Azure services.

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

591

 Table I displays the results of separate tests

conducted on each service using the three search

algorithms, with a time budget of one hour each trial.

We document the following metrics for every

experiment: total API requests (Total Req.),

maximum sequence length (Max Len.), number of

tests, percentage of requests sent by main driver

(Main.) and active checkers (Checkers.) and

individual contribution of each checker.

 Based on Table I, it is evident that BFS achieves the

lowest depth for all services, BFS-Fast reaches the

highest depth, and BFS-Cheap offers a compromise

between the two, being closer to BFS than BFS-Fast.

Based on how quickly each service responds, the

total number of tests created varies across all of them.

The overall number of tests grows dramatically for

BFSFAST with Azure B and O-365 C, while for all

other services, this number stays relatively consistent.

If this growth is true for O-365 C, then

to be because BFS-FAST handles these two services

with a much lower failure rate than BFS and BFS-

Cheap. Our fuzzer, as the client, receives these

unsuccessful requests with longer wait times. It is

well-known that services may throttle future

requests—that is, attempt to slow them down—by

delaying answers to unsuccessful requests. When it

comes to Azure B, BFS-Fast goes through with more

tests than BFS or BFS-Cheap. This is due to the fact

that BFS-Fast's request sequences are more in-depth,

but they include a large number of DELETE requests,

which are quicker to run (their replies are returned

practically quickly).

As before, BFSCheap falls somewhere in the middle,

with BFS having the greatest overall percentage of

checker tests (Checkers) and BFS-FAST having the

lowest. As mentioned in Section III-D, the reason for

inventing BFS-Cheap was to address the fact that

BFS-Fast produces more tests than its competitors,

but that it prunes its search area and engages checkers

less often. One notable exception is the 33% increase

in BFS-generated tests for O-365 C. More successful

requests (refer to the preceding paragraph) likely

caused more checker tests, which is why there was

such a surge.

We can see that the amount of tests generated by each

checker differs between services from the

information in Table I. How many use-after-free

requests were conducted, how many resource

creation requests failed, and how deep the object

hierarchy is for the resource hierarchy checker all

contribute to this amount. The user-namespace

checker, on the other hand, is the most often activated

and accounts for the bulk of the tests created by the

checker.

Next, we'll talk about how the three search algorithms

yielded roughly identical bug counts for all three

services.

C. Evaluating Alternative Checker Methods

Following our discussion of the two modes in Section

III, we will now compare their performance.

The Tests column in Table II displays the total

number of requests issued during an hour of fuzzing

using BFS-Cheap. The proportion of requests

produced by the main driver of Section II or any of

the four checks is also shown. You can see in the

chart that the primary driver and each of the testers

uncovered a certain number of distinct defects, or

"bug buckets," in an hour of searching. The outcomes

for both the optimal and exhausting modes are

shown.

The amount of tests differs among services and

checker settings, as we can see. As anticipated,

nevertheless, the exhaustive mode consistently

produces a larger proportion of tests created by the

checkers. Optimal mode allows the primary driver to

explore more states quicker by reducing the number

of tests produced per visited state by the checkers.

Even though there are fewer checker tests per visited

state in optimized mode, all three services still detect

all the unique issues (bug buckets) identified by

exhaustive mode. In addition, the primary driver

discovers an additional issue using the optimized

mode for the O-365 C service after an hour of

searching compared to the exhaustive mode.

The significance of the optimized checkers mode is

further shown by an intriguing inversion that is

shown in Table II. Our observations in Azure A reveal

that the optimized mode generates almost twice the

number of tests as the exhaustive option (4050 vs

2174). This seems backwards at first glance. Our

research led us to the conclusion that the exhaustive

mode of the user-namespace checker generates tests

with much longer response times for Azure A. While

this particular checker does more tests in exhaustive

mode than in optimized mode, the total test

throughput is slower due to the presence of costly

operations (i.e., high latency).

We discovered and submitted a total of seven distinct

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

592

issues to the creators of these three services

throughout our testing. The main driver detected

4,500 bugs, and each of the checks (except the user-

namespace checker) found three flaws. Several

intriguing bugs discovered by the checkers proposed

in this research will be covered in the part that

follows.

V. EXAMPLES OF REST API

SECURITYVULNERABILITIES

So far, we have successfully fuzzed three production

Azure and Office 365 cloud services that are

comparable in size and complexity to the ones

mentioned above. Nearly every one of these services

has a couple of new problems discovered by our

fuzzing. Our new security checkers have found rule

violations, accounting for about one third of the

issues, while "500 Internal Server Errors" accounts

for around two thirds. The service owners were

notified of these issues, and they have all been

resolved.

 We stress that security testers boost trust in the

service's overall dependability and security even if

they don't uncover any problems; this is because they

are more certain that the rules they verify cannot be

broken.

 The security significance of these issues is discussed

in this section, which includes instances of actual

problems discovered in Azure and Office 365

services that have been deployed. We take

precautions to protect the privacy of those services by

masking their names and other identifying

information.

Because (1) it tries to re-use the deleted resource in

Step 3 and (2) the result from Step 3 differs from the

anticipated "404 Not Found" response, the Use-after-

free checker finds this.

 Resource-hierarchy violation in Office365. The

following issue was found by the resource-hierarchy

analyzer in an Office 365 messaging service that

allows users to compose messages, react to them, and

modify them.

 1) Make a first message called msg-1 using the

POST request to /api/posts/msg-1.

 Make a second message called msg-2 and send it

using the POST method to the address

/api/posts/msg-2.

 3) Make a reply-1 to the first message (using the

POST request /api/posts/msg-1/replies/reply-1).

 4) Use msg-2 as the message identification and edit

reply-1 using a PUT request (with the syntax PUT

/api/posts/msg-2/replies/reply-1).

 Despite expecting a "404 Not Found" error, the last

request in Step 4 unexpectedly gets a "200 Allowed"

answer. This infraction of the rule shows that the

reply-posting API implementation does not examine

the whole hierarchy when verifying the reply's rights.

 If the validity tests for the hierarchy are missing, it

might be possible for an attacker to circumvent the

parent hierarchy and access child items. This could

lead to security issues.

 Azure instance experiencing a resource leak. A

different Azure service had the same issue due to the

resource-leak checker.

 1) With a PUT request, create a new resource with

the name X and type CM. The resource should have a

certain malformed body. A "500 Internal Server

Error" is the result, and that's a problem in and of

itself.

 2) If you want a list of all CM resources, you'll get

an empty list.

 Third, using a PUT request, create a new CM

resource with the same name X as in Step 1, but in a

different area (e.g., US-West instead of US-Central).

 An unexpected "409 Conflict" rather than the

anticipated "200 Created" is returned by the last

request in Step 3. The service has entered an

inconsistent state due to this behavior, which was

caused by the unwanted sideeffects of the

unsuccessful request in Step 1. That the user's

perception is accurate is shown by the GET request in

Step 2; the CM resource with the ID X that was tried

to be created in Step 1 has not been generated.

 Step 3's second PUT request, however, demonstrates

that the service retains memory of the previous PUT

request's unsuccessful attempt to create the CM

resource X. Because these unsuccessful resource

creations are (correctly) not counted against the user's

resource quota, an attacker could theoretically build

an unlimited number of these "zombie" resources by

repeating Step 1 using numerous different names.

This would allow them to surpass their official quota.

But it's obvious that some part of the backend service

is remembering them (wrongly).

 Another Case in Point: A DoS Attack on Resource

Accounting using Anger.

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

593

 During our five hours of fuzzing another Azure

service, we unintentionally caused a significant

decline in its health. What follows is a synopsis of

the research about its origin.

 For our fuzzing program to stay under its cloud

resource restrictions, we implemented a trash

collector. Our garbage collector ensures that the

number of active resources never exceeds limits by

eliminating (using a DELETE request) resources that

are no longer needed. For example, if a default quota

for a resource type Y is 100, then no more than 100

of that type may be generated at any one moment. If

we didn't have trash collection, our fuzzing tool

would usually hit its quota restrictions in minutes and

stop exploring state space.

 Requests to generate resources of a certain type—

let's call it "IM"—through this Azure service trigger

additional processes that take minutes to perform in

the service backend, but they deliver a response

promptly. Similarly, deleting an IM resource just

takes a few minutes and provides a response just as

fast. While these PUT and DELETE requests indeed

update IM resource counts towards quotas, they do so

much too promptly and without waiting the many

minutes really required to do the operations.

Therefore, an attacker may create-then-delete IM

resources rapidly without going over their limit,

while simultaneously initiating a deluge of backend

operations and ultimately overwhelming the backend

service. We unintentionally set off a Denial-of-

Service attack using our fuzzing tool.

 To address this security hole, we should update the

use counts for DELETE requests to their quotas only

when all delete backend operations are finished,

which is usually a few minutes later for IM resources.

By blocking further IM resource-creation PUT

requests until previous DELETE requests are entirely

finished, the quantity of backend jobs is still linearly

limited by the official limitation.

VI. RELATED WORK

An extension of stateful REST API fuzzing is our

work [5]. To automatically produce sequences of

requests that meet the specification, a fuzzing

language is used in conjunction with a Swagger

specification of a REST API. Instead of the user

having to manually build a language like in classic

grammar-based fuzzing [20], [22], [24], stateful

REST API fuzzing automates the development of a

fuzzing grammar. The model-based testing [27]

finite-state-machine model of the system being tested

is the basis for the BFS and BFS-Fast search

techniques. In order to improve upon stateful REST

API fuzzing, this paper does two things: first, it

introduces a set of security rules for REST APIs and

matching checkers that can efficiently test and detect

compliance with these rules; and second, it

introduces BFS-Cheap, a new search strategy that

provides a compromise between BFS and BFS-Fast

when employing active checkers.

You can use HTTP-fuzzers to test REST APIs since

all of their requests and replies go over the HTTP

protocol. Fuzzers can capture and replay HTTP

traffic, parse the contents of HTTP requests and

responses (such as embedded JSON data), and then

fuzz them using either pre-defined heuristics or user-

defined rules. Examples of such fuzzers are Burp [7],

Sulley [23], BooFuzz [6], the commercial AppSpider

[4], and Qualys's WAS [21]. Recent extensions to

tools that record, parse, fuzz, and replay HTTP traffic

have made use of Swagger standards to assist the

fuzzing of HTTP requests via REST APIs [4], [21],

[26], [3].

Unfortunately, these tools are limited to fuzzing the

parameter values of individual requests and do not do

any global analysis of Swagger specifications. As a

result, they cannot construct novel request sequences.

This is because their fuzzing is stateless. So, it's not a

good idea to add active checks to stateless fuzzers.

Our approach, on the other hand, adds active checks

that target particular REST API rule breaches to

stateful REST API fuzzing.

Due to their origins as extensions of more

conventional web-page crawlers and scanners, most

HTTP-fuzzers are able to check a wide variety of

properties specific to HTTP. For example, they can

ensure that responses use proper HTTP-usage and

even detect cross-site scripting attacks or SQL

injections when entire web pages with HTML and

Javascript code are returned. But most REST APIs

don't provide web pages in their answers, so those

checking skills aren't useful for them.

Our study presents new security criteria that are

tailored to REST API use, in contrast to HTTP-

fuzzers and web scanners. These regulations are

relevant to security because an adversary might

potentially utilize their infractions to compromise a

service's integrity or get sensitive data or resources

without authorization. On the other hand, we don't go

into detail on how to verify other REST API use

criteria [9] in this work. For example, we don't cover

request idempotence, which means that sending the

same request many times won't change the result.

Surprisingly, there is a lack of documentation on how

to utilize REST APIs securely, despite their

popularity.

Authentication token and API key management is a

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

594

common theme in security recommendations from

groups like OWASP [19] (Open Web Application

Security Project) and publications on REST APIs [1]

and micro-services [17]. There is a lack of specific

instructions on how to manage resources and validate

inputs using the REST API. The four security rules

presented in this work are novel, as far as we are

aware.

In Section III, we utilized the term "active checker"

from [10] to describe our checkers. Unlike

conventional runtime verification, which consists of

only monitoring API request and response sequences,

our checkers also create new tests to identify rule

violations. Our approach is based on using numerous

independent security checkers at the same time, as

described in [10]. However, we do not create

additional tests by symbolic execution, constraint

formation, or solution, as was done in [10]. Since our

fuzzing tool and its checkers only see REST API calls

and answers, they are unable to discern the inner

workings of the services that we test. It would be

beneficial to delve more into this possibility in future

study, since cloud services are often intricate

distributed systems with components written in

various languages. Consequently, generic symbolic-

execution-based techniques may appear difficult.

Pen testing, which involves security professionals

reviewing the architecture, design, and code of cloud

services from a security standpoint, is the major

approach used today to assure the security of cloud

services.

Pen testing is costly, time-consuming, and has

restricted coverage because of how much manual

effort is required. Fuzzing tools and security

checkers, such as those covered in this article, may

supplement pen testing by partially automating the

detection of certain types of security flaws.

VII. CONCLUSION

To identify and protect RESTful APIs and services,

we laid down four guidelines. To further automate

testing and detection of rule violations, we

demonstrated how to add active property checks to a

stateful REST API fuzzer. Using the fuzzer and

checkers outlined in this work, we have successfully

fuzzed about a dozen production Azure and Office-

365 cloud services. Every one of these services has a

couple of new vulnerabilities discovered by our

fuzzing efforts. Our new security checkers have

identified rule violations as accounting for about one

third of these issues, while "500 Internal Server

Errors" accounts for around two thirds. We notified

the service owners of all the issues, and they have all

been resolved.

 Vulnerabilities in security may be easily identified

when the four criteria presented in this article are

violated. Our current bug "fixed/found" ratio is

virtually 100%, indicating that all of the service

owners have taken the issues we detected seriously.

Also, it's better to repair these problems now than to

risk a real catastrophe, which may be caused by an

attacker or happen accidentally, and the results would

be unpredictable. Lastly, the fact that our fuzz testing

method does not produce any false positives and that

these errors are repeatable is helpful.

 On what scale do these findings apply? The only

way to find out is to examine additional attributes and

run more REST API-based bug and vulnerability

scans on more services. Considering the current

surge in REST APIs for online and cloud services, it

is surprising that there is surprisingly little advise

about the security-related use of REST APIs. In this

regard, our study contributes four rules whose

infractions are important to security and which are

not easy to verify and resolve.

REFERENCES

[1] S. Allamaraju. RESTful Web Services

Cookbook. O’Reilly, 2010.

[2] Amazon. AWS. https://aws.amazon.com/.

[3] APIFuzzer.

https://github.com/KissPeter/APIFuzzer.

[4] AppSpider.

https://www.rapid7.com/products/appspider.

[5] V. Atlidakis, P. Godefroid, and M. Polishchuk.

RESTler: Stateful RESTAPI Fuzzing. In 41st

ACM/IEEE International Conference on

SoftwareEngineering (ICSE’2019), May 2019.

[6] BooFuzz. https://github.com/jtpereyda/boofuzz.

[7] Burp Suite. https://portswigger.net/burp.

[8] D. Drusinsky. The Temporal Rover and the ATG

Rover. In Proceedingsof the 2000 SPIN Workshop,

volume 1885 of Lecture Notes in ComputerScience,

pages 323–330. Springer-Verlag, 2000.

[9] R. T. Fielding. Architectural Styles and the

Design of Network-basedSoftware Architectures.

PhD Thesis, UC Irvine, 2000.

[10] P. Godefroid, M. Levin, and D. Molnar. Active

Property Checking. InProceedings of

EMSOFT’2008 (8th Annual ACM & IEEE

http://www.ijmece.com/

ISSN 2321-2152

www.ijmece.com

Vol13,Issue 1, 2025

595

Conferenceon Embedded Software), pages 207–216,

Atlanta, October 2008. ACMPress.

[11] K. Havelund and G. Rosu. Monitoring Java

Programs with JavaPathExplorer. In Proceedings

of RV’2001 (First Workshop on

RuntimeVerification), volume 55 of Electronic

Notes in Theoretical ComputerScience, Paris, July

2001.

[12] R. L¨ammel and W. Schulte. Controllable

Combinatorial Coverage inGrammar-Based

Testing. In Proceedings of TestCom’2006, 2006.

[13] Microsoft. Azure.

https://azure.microsoft.com/en-us/.

[14] Microsoft. Azure DNS Zone REST API.

https://docs.microsoft.com/enus/rest/api/dns/zones/g

et.

[15] Microsoft. Microsoft Azure Swagger

Specifications. https://github.com/Azure/azure-rest-

api-specs.

[16] Microsoft. Office. https://www.office.com/.

[17] S. Newman. Building Microservices. O’Reilly,

2015.

[18] OAuth. OAuth 2.0. https://oauth.net/.

[19] OWASP (Open Web Application Security

Project). https://www.owasp.org.

[20] Peach Fuzzer. http://www.peachfuzzer.com/.

[21] Qualys Web Application Scanning (WAS).

https://www.qualys.com/apps/web-app-scanning/.

[22] SPIKE Fuzzer.

http://resources.infosecinstitute.com/fuzzer-

automationwith-spike/.

[23] Sulley. https://github.com/OpenRCE/sulley.

[24] M. Sutton, A. Greene, and P. Amini. Fuzzing:

Brute Force VulnerabilityDiscovery. Addison-

Wesley, 2007.

[25] Swagger. https://swagger.io/.

[26] TnT-Fuzzer. https://github.com/Teebytes/TnT-

Fuzzer.

[27] M. Utting, A. Pretschner, and B. Legeard. A

Taxonomy of Model-BasedTesting Approaches.

Intl. Journal on Software Testing, Verification

andReliability, 22(5), 2012.

[28] M. Yannakakis and D. Lee. Testing Finite-

State Machines. In Proceedingsof the 23rd Annual

ACM Sy

http://www.ijmece.com/

