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Abstract— 

These days, REST APIs are the norm for 

programmatic access to most online and cloud 

applications.  In this article, we will look at how a 

malicious actor may take over a service by taking 

advantage of security holes in its REST API.  In 

order to capture the desired qualities of REST APIs 

and services, we provide four security principles. 

 To further automate testing and detection of rule 

violations, we demonstrate how to add active 

property checks to a stateful REST API fuzzer.  We 

go over several efficient and modular ways to create 

such checks.  We describe the security 

consequences of the new vulnerabilities discovered 

in several production-ready Azure and Office 365 

cloud services using these checkers.  We have 

resolved all of these issues. 

 Topics: REST APIs, cloud computing, security, and 

test generation 

I. INTRODUCTION 

A new era of cloud computing is dawning. Cloud 

platform providers such as Amazon Web Services [2] 

and Microsoft Azure [13] have deployed thousands of 

new cloud services in the past few years. Their 

customers are "digitally transforming" their 

businesses by modernizing their processes and 

collecting and analyzing all kinds of new data.  

The majority of cloud services may now be accessed 

programmatically using REST APIs [9]. Built on top 

of the widely-used HTTP/S protocol, REST APIs 

provide a standard method to create, monitor, 

manage, and remove resources in the cloud.  

Swagger, formerly known as OpenAPI, is an 

interface-description language that cloud service 

developers may use to describe their REST APIs and 

provide sample client code [25]. A Swagger 

specification describes how to contact a cloud service 

using its REST API, including what queries the 

service can accept, what replies may be received, and 

the response format.  

How secure are all those APIs? Today, this question 

is still largely open. Tools for automatically 

evaluating cloud services via their REST APIs and 

assessing whether these services are dependable and 

safe are still in their infancy. Some tools available for 

testing REST APIs collect live API communication, 

and then analyze, fuzz, and replay the data with the 

hope of detecting flaws [4], [21], [6], [26], [3]. 

Recently, stateful REST API fuzzing [5] was 

suggested to precisely test more deeply services 

exposed behind REST APIs. Given a Swagger 

specification of a REST API, this technique 

automates IN order to comprehensively exercise the 

cloud service deployed behind that API, with the 

purpose of identifying unhandled exceptions (service 

failures) that may be identified by a test client as 

“500 Internal Server Errors”. While that effort 

appears promising and reports numerous new issues 

detected, its scope is constrained to the detection of 

unhandled exceptions.  

In this work, we offer four security principles that 

capture desirable aspects of REST APIs and services.  

• Use-after-free rule. A resource that has been deleted 

must no longer be accessible.  

• Resource-leak rule. In order to avoid any potential 

consequences in the backend service state, a resource 

that could not be generated successfully should not 

be available.  

• The rule of resource hierarchy. No two parent 

resources can have access to the same child resource.  

The rule pertaining to user-namespaces. Nobody else 

should be able to access resources made in one user's 

namespace.  

As we'll see in the section below, an attacker could 

exploit a breach in these rules to launch an elevation-
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of-privilege attack, an information disclosure attack, 

or a denial-of-service attack—all of which could lead 

to the hijacking of cloud resources or the bypassing 

of quotas. Here we demonstrate how to add support 

for testing and detecting rule violations in a stateful 

REST API fuzzer. We establish an active property 

checker for every rule that does two things: (1) finds 

rule violations and (2) generates new API requests to 

test them. Thus, in addition to looking for rule 

violations, each checker also tries to break its own 

rule.  

To ensure that these checkers do not conflict with one 

another, we go over possible modular 

implementations. We also go over ways to efficiently 

implement each individual checker, by removing 

likely-redundant tests whenever possible, because 

each checker creates new tests, on top of an already-

large state space exploration.  

By design, these checkers can uncover security rule 

violations that baseline stateful REST API fuzzing 

misses (beyond the "500 Internal Server Errors"). 

Several production Azure and Office 365 cloud 

services had new bugs discovered using these 

checkers. By identifying more kinds of errors at a 

small incremental testing cost, security checkers raise 

the utility of REST API fuzzing.  

Here are some important points that this paper brings 

up:  

Here, we lay out the groundwork for active checkers 

by defining rules that describe the security properties 

of REST APIs. We then create and deploy these 

checkers to test and detect rule violations. Finally, we 

provide comprehensive experimental results that 

evaluate the effectiveness and performance of these 

active checkers on three production cloud services. 

We discovered new vulnerabilities in various 

production Azure and Office 365 cloud services using 

these scanners, and we talk about the security 

implications of these vulnerabilities.  

The rest of the paper is organized as follows. In 

Section II, we recall background information on 

stateful REST API fuzzing. In Section III, we 

introduce rules that capture desirable properties of 

secure REST APIs and present active checkers to test 

and detect violations of these rules. In Section IV, we 

present experimental results with active checkers on 

production cloud services. In Section V, we discuss 

new bugs found by these checkers and their security 

implications.  

In Section VI, we discuss related work, and we 

conclude the paper in Section VII.  

II. STATEFUL REST API FUZZING 

Section III introduces security property checks that 

may be used as expansions of this fundamental 

approach; in this section, we review the notion of 

stateful REST API fuzzing [5]. 

 When it comes to cloud services, we think REST 

APIs are the way to go. 

 Requests are messages sent by a client software to a 

service, while replies are messages received back.  

This kind of communication is carried out using the 

Hypertext Transfer Protocol, Secure.  There is a 

unique HTTP status code (2xx, 3xx, 4xx, or 5xx) 

assigned to each answer. 

 One example of a specification language for REST 

APIs is Swagger [25], which is also called OpenAPI.  

The Swagger standard details the REST API access 

to a service, including the types of queries that the 

service may process, the possible answers, and the 

format for each. 

 Using a limited number of queries, we characterize a 

REST API.  Every request r is a tuple that contains 

the following elements: an authentication token (a), 

the kind of request (t), a resource path (p), and the 

request content (b). 

 There are five possible options for request type t in 

REST: PUT (create or update), POST (create or 

update), GET (read, list or query), DELETE (delete), 

and PATCH (update).  One way to identify a cloud 

resource and its parent hierarchy is by looking at its 

resource path, which is a string.  For most cloud 

resources, p is a non-empty sequence that matches 

the regular expression 

(/_resourceType_/_resourceName_/)+, where 

resourceType is the type of the resource and 

resourceName is the name of the individual resource 

of that kind.  In most cases, the request attempts to 

create, access, or delete the particular resource that is 

listed last in the route.  Additional parameters and 

their values may be included in the request body b. 

These parameters can be necessary or optional, 

depending on the request.You need to include three 

resource names—a subscriptionID, a 

resourceGroupName, and a zoneName—in the route 

of this GET request, and the body (at the end, 

represented by { }) is blank. 

 While DELETE requests remove resources from an 

API, PUT and POST requests usually add new ones.  

A producer for the resource type T is a request whose 

execution results in the creation of a new resource of 

that kind.  An identifier, or "id," is a representation of 

a freshly formed resource.  We sometimes refer to 

resources as dynamic objects because of the way they 

are formed.  An example of a consumer request 
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would be one that includes a resource name of type T 

either in its route or content.  From time to time, we 

shall talk about the dynamic object type by its 

resource name, which is type T.  No new resources 

are created by the GET request illustrated in the 

Azure DNS zone example; instead, three resources of 

the types subscriptions, resourceGroups, and 

dnsZones are consumed. 

 Users may define a limited finite collection of 

specified values—called fuzzable values—to be 

randomly picked within resource routes or request 

bodies of individual requests.  In the body of a 

request, a user may indicate that an integer value may 

be anything from 0 to 10,000,000.  Fuzzing 

dictionaries include such sets of values.  The 

rendering of a request indicates the mapping of each 

fuzzable value to a single concrete value taken from 

its fuzzing dictionary, given that the request contains 

fuzzable values.  With n fuzzable values that may 

take on k potential values each, the number of 

possible renderings is nk.  When the matching 

request is executed and provides a valid response 

(specified in the next paragraph), we say that the 

rendering is legitimate.  The fuzzing dictionaries and 

values that users choose to fuzz are entirely up to 

them. 

 A directed graph with nodes representing service 

states and edges representing transitions between 

them is what we call a service's state space.  

Executing a single request r from a given state s of 

the service results in a successor state s_, which is 

represented by the expression s r→ s_.  If a request r 

in state s prompts a 2xx answer, it is legitimate; if it 

prompts a 3xx or 4xx response, it is invalid; and if it 

prompts a 5xx response, it is a problem. 

 The state space of the service that can be reached 

from an initial state when no resources exist may be 

explored by performing sequences of requests.  When 

this kind of investigation tries to access service states 

that can only be reached by sending out a series of 

queries, it is being stateful: 

 The resources used in later requests in the same 

sequence might be generated by previous ones, 

allowing for more requests to be executed and deeper 

service states to be reached. 

 Several search techniques, such as a systematic 

breadth-first search or a random search, may be used 

to explore state space [5].  Due to the fact that request 

sequence length is not limited, sets of alternative 

renderings may be extremely vast, and the service 

under test is seen as a blackbox, state spaces can be 

huge—if not infinite.  The good news is that it could 

be enough to only partially explore the state space to 

find intriguing issues.  When we obtain a 500 HTTP 

status code after running a request sequence, we 

consider it a bug.  It is safer to address these issues 

rather to risk a live event with unknown effects. 

Unhandled exceptions, such as "500 Internal Server 

Errors," are caused by unexpected input request 

sequences and may corrupt the service state and 

severely harm its health. 

 We will sometimes refer to executions of request 

sequences as test cases in the following, and 

executions of single requests as tests.  The primary 

mechanism behind stateful REST API fuzzing is the 

basic state-space exploration technique discussed in 

this section. 

III. SECURITY CHECKERS FOR REST APIS 

Active checks for REST API security rules are 

defined and described in this section. We begin with 

the four REST API security rules that are introduced 

in Section III-A. We lay out the steps to build active 

checkers for testing and finding security rule 

breaches in Section III-B. There is just one kind of 

security rule violation that each active checker 

targets. Section III-C delves into the topic of modular 

combination, specifically looking at how each 

checker may be used in conjunction with the primary 

driver of stateful REST API fuzzing and with each 

other. We provide a novel search technique for 

scalable test creation with property checkers in 

Section III-D.  

Section III-E explains how to classify checker 

breaches so that the user isn't notified of the same 

issue more than once.  

Rule No. A. – Security  

In order to capture the desired qualities of REST 

APIs and services, we provide four security 

principles. We provide an example for each rule and 

talk about the security implications of it. A 

combination of manual penetration testing and root 

cause analysis of customer-visible problems led to 

the discovery of actual defects in deployed cloud 

services, which served as the basis for all four 

criteria. Later in Section V, we will provide examples 

of new, previously undiscovered problems that we 

discovered as rule violations in production Azure and 

Office 365 services that were already deployed.  

The rule of use after free. After deletion, a resource 

can no longer be accessed. That is to say, any further 

operations (such as read, update, or delete) on a 

resource that has been successfully deleted will 

always fail.  

If you want to remove the account associated with 
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user-id1, for instance, you may do that by sending a 

remove request to the URI /users/user-id1. After that, 

all further attempts to use that ID must fail and return 

a "404 Not Found" HTTP status code.  

When a removed resource is still available via the 

API, it is considered a use-after-free violation. 

Seriously, this can't take place. The service's backend 

state might be corrupted and resource quotas could be 

bypassed due to this obvious fault.  

A regulation about the loss of resources. An 

unsuccessfully produced resource must not only not 

be available, but also not "leak" any related resources 

in the backend service state. That is to say, if a 4xx 

error occurs as a result of an unsuccessful PUT or 

POST request to create a new resource, then all 

further operations on that resource will likewise fail. 

In addition, the user should not experience any 

unintended consequences related to the successful 

generation of that resource type in the backend 

service state. To illustrate, a resource that was unable 

to be established cannot be used to meet the user's 

service quotas, and the user must be allowed to reuse 

the name of the resource.  

For instance, in order to generate the URI /users/user-

id1 with a faulty PUT request, a 4xx answer is 

required. It is required that any future attempts to 

access, modify, or delete this URI also fail.  

When a resource that was not correctly generated yet 

"leaks" some side-effect in the backend service state, 

it is considered a resource-leak violation. Example: a 

later GET request lists the resource, but a DELETE 

request fails to remove it. Attempts to recreate the 

resource also fail, and a "409 Conflict" answer is 

returned. Never let this happen since it might have 

unforeseen effects on the service's performance 

(because of excessively big database tables, for 

example) or the capacity of that resource type 

(because additional resources can't be added because 

resource quota limitations have been surpassed).  

Resource-hierarchy rule. No two parent resources 

may have access to the same child resource. Put 

simply, when a resource is successfully created from 

another resource and marked as such in service 

resource paths, the child resource must not be 

accessible when the parent resource is replaced with 

another resource. This means that the child resource 

cannot be read, updated, or deleted.  

For instance, if you create users user-id1 and user-id2 

using POST requests to URIs /users/user-id1, 

/users/user-id2, and /users/user-id1/reports/report-id1, 

and then add report report-id1 to user user-id1, then 

you can't access report-id2 from URI /users/user-

id2/reports/report-id1. This is because, according to 

the resource-hierarchy rule, report report-id1 belongs 

to user user-id1 but not to user-id2.  

The absence of a parent-child link between two 

resources, even when both originated from the same 

parent, is a resource-hierarchy violation.  

When this kind of breach is feasible, an adversary 

may be able to provide an illegal parent object 

identity.  

 

(for example, user-id3), and then take control of an 

illegal child object (for instance, report-id1) by 

reading or writing to it. It is imperative that no bugs 

involving resource hierarchy ever occur; doing so 

could put users in harm's way.  

Policy regarding user-namespaces. You can't have 

resources from one user namespace available to 

resources from another. The user token used to 

interact with the API (e.g., OAUTH token-based 

authentication [18]) defines the user namespaces in 

the context of REST APIs.  

For example, after submitting a POST request to 

build URI /users/user-id1 using token token-of-user-

id1, resource user-id1 must not be accessible using 

another token token-of-user-id2 of another user.  

A user namespace violation occurs when a resource 

created within the namespace of one user is 

accessible from within the namespace of another 

user. If such a violation ever occurs, an attacker 

might be able to execute REST API requests using an 

unauthorized authentication token, and perform 

unauthorized operations on resources belonging to 

another (victim) user.  

B. Active Checkers  

We implement active checks for the rules provided in 

Section III-A. An active checker monitors the state 

space exploration performed by the main driver of 
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stateful REST API fuzzing and suggests new tests to 

assert that specific rules are not violated. Thus, an 

active checker augments the search space by 

executing new tests targeted at violating specific 

rules. In contrast, a passive checker monitors the 

search performed by the main driver without 

executing new tests.  

We design active checkers following a modular 

design based on two principles:  

1) Checkers are independent from the main driver of 

stateful REST API fuzzing and do not affect its state 

space exploration.  

2) Checkers are independent from each other and 

generate tests by analyzing the requests executed by 

the main driver, excluding those executed by other To 

make sure that the first principle is followed, we 

make sure that all the checks are executed once the 

main driver finishes running a new test case. As for 

the second principle, we make sure that checkers 

don't interfere with one other and work on separate 

test cases by ordering them according to their 

semantics (we'll get into this further later on). The 

next sections discuss the implementation of each 

checker and provide improvements to reduce the 

expansion of state spaces.  

Checker for use after free. In Figure 1, you can see 

the use-after-free rule checker's implementation in 

notation similar to Python. After the main driver 

executes a DELETE request (see Figure 4), the 

algorithm is called and takes three inputs: a sequence 

of requests (seq of requests), the global cache of 

dynamic objects (global_cache), and the set of all 

available API requests (reqCollection). The global 

cache contains the most recent object types and ids 

for the dynamic objects created so far. checkers. 

 

 

Line 5 retrieves the kinds of the dynamic objects 

consumed by the last request, and a temporary 

variable named target_obj_id is created to record the 

id of the last object type. We take the most recent 

type in req_object_types as the one that was really 

removed, even if the last request could have 

consumed many types of objects. For instance, a 

DELETE request to the following URI: 

/users/userId1/reports/reportId1 consumes two sorts 

of objects: reports and users, but it only deletes 

reports. Following this initial setup, the reqCollection 

is iterated over by the for-loop (line 12), which skips 

requests that do not consume the target object type 

(line 14).  

The method EXECUTE (line 19) uses the recovered 

target object id from the global cache of dynamic 

objects (line 17) to execute request req once it finds a 

request, req, that consumes the target object type. In 

order to execute a request, the EXECUTE function 

checks global cache for object identifiers, therefore 

the target object id is restored there several times. A 

use-after-free violation will be triggered if any of 

these requests are successful (see to Section III-A).  

 

In order to control the amount of extra tests that are 

created for each request sequence, the inner loop may 

end after one request for each target object type is 

detected (line 21), which is optional. In the absence 

of an exhaustive value for the mode variable, this 

option is invoked. In Section IV, we provide 

comprehensive experimental findings on the effects 

of this optimization.  

Detector of resource abuse. Figure 2 depicts the 
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resource-leak rule tester. The three parameters used 

by the method are identical to those of the use-after-

free checker. This checker processes request 

sequences carried out by the primary driver, whose 

most recent request resulted in a response with an 

incorrect HTTP status code (see to Figure 4 for 

reference). The first thing the algorithm does is find 

out what kinds of dynamic objects were created by 

the previous request (target_obj_types) and the full 

series (seq_obj_types) (lines 4 and 5). Three layered 

for loops implement the algorithm's core logic. Line 6 

of the first loop contains an iteration of all object 

types that were generated by the previous request. On 

line 7, there is a second loop that iteratively checks 

the object ids that were "guessed" for the kind of item 

that returned an incorrect HTTP status code. You may 

provide an object type to the GUESS function, and it 

will return a list of probable object ids that fit that 

type but were unsuccessfully constructed.  

As an example, the checker will try to run any 

request that uses the object type "x" and state it fails 

when using the object id "objx1" if the creation of a 

dynamic object with object id "objx1" and object type 

"x" fails via the API (based on the answer obtained). 

In order to prevent an explosion in the number of 

further tests, the total number of estimated values per 

object id is restricted to a parameter value that the 

user provides.  

Line 8 temporarily adds an object-id value that was 

guessted to the global cache of dynamic objects that 

were appropriately created.  

Based on the object types generated by the current 

sequence, the inner loop (line 9) iteratively searches 

through the requests in reqCollection for those that 

are executable and consume the specified target 

object type. On line 17, the "guessed" object ids that 

were previously stored in the global cache are used to 

perform these queries. In this manner, the algorithm 

attempts to  

 

either claims that the provided request sequence does 

not include a resource-leak violation (line 18) or 

triggers one (see Section III-A).  

When one request for each estimated item is 

identified, the inner loop (optionally) finishes (line 

19), which limits the number of subsequent tests 

created for each input sequence. Section IV assesses 

this optimization.  

Checker for resource hierarchy. Figure 3 shows the 

resource-hierarchy rule checker in action. A sequence 

of requests (seq) representing the most recent test 

case run by the primary driver and the current global 

cache of dynamic objects (global_cache) are the two 

inputs that the algorithm takes into account. Line 6 

indicates the object types eaten by the most recent 

request in the current series, and line 7 indicates the 

object types consumed by all requests in the sequence 

prior to the previous request. This information is 

recorded by the algorithm as target_obj_types.  

Following that, on lines 12 and 13, the identifiers of 

the objects that were used just by the last request are 

kept locally. By running requests that attempt to 

access them using incorrect parent objects, the 

checker will try to breach the hierarchy of these child 

objects. With that in mind, the present sequence is 

run until the final request (but not including it) at line 

15. Lastly, on lines 18 and 19, the old child object ids 

are restored. Then, on line 20, the final request is 

completed using both the new parent object ids and 

the old child object ids. The restored child object ids 

do not belong to these parent object ids.  

In this approach, the program either claims that the 

requested sequence does not violate the resource 

hierarchy (line 21) or attempts to induce a resource-

hierarchy violation (see Section III-A).  

Namespace and user verification tool. Space 

limitations prevent us from providing a 

comprehensive description of this checker. To 

summarize, this checker tries to use a different 

authentication token to re-execute the legitimate last 

request of each test case that the main driver has 

performed. If this is successful, an attacker using a 

different authentication token might potentially take 

control of the objects used in the previous request, 

leading to the reporting of a user namespace violation 

(see to Section III-A for further information).  

C. Making All Checkers Into One  

Here is how the four checkers mentioned before are 

put into action. The code in Figure 4 is called 

whenever the stateful REST API fuzzer enters a new 

state, as stated in Section II. This code implements 

the state-specific checks in response to the most 

recent request. We will now go over some key 

features of these checkers and how they work 

together.  

Contribution beyond stateful REST API fuzzing. By 

doing more tests and checking for replies other than 

5xx, the checkers expand the state space and may 

identify unexpected 2xx responses as rule-violation 
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errors. This extends the core driver of baseline 

stateful REST API fuzzing. So, it's evident that they 

improve the main driver's bug-finding skills. They 

can detect flaws that the main driver couldn't identify 

on its own.  

Active property checking vs passive monitoring. As 

said before, the checkers we create provide more test 

cases to the search area the primary driver uses to 

trigger and identify particular rule violations. But 

without actually running those extra tests, it's quite 

unlikely that passive runtime monitoring of these 

rules alongside the primary driver will pick up on 

rule breaches. Passive monitoring alone is unlikely to 

catch use-after-free and resource-leak rule breaches 

since the primary driver's default state space 

exploration probably won't try to re-use deleted 

resources or resources after a failure, respectively. 

Passive monitoring would also miss resource-

hierarchy and user-namespace rule breaches as the 

baseline main driver doesn't try to swap object IDs or 

authentication tokens, respectively. That is to say, in 

comparison to non-checker tests, the extra test cases 

produced by the checkers are not superfluous; rather, 

they are essential for discovering rule violations.  

The checkers work in tandem with one another. Our 

four defined checkers are mutually supportive; that 

is, due to the fact that their respective preconditions 

are incompatible, no two of them can ever provide 

new tests that are identical to one another. To begin, 

request sequences that conclude with a DELETE 

request activate no other checkers beyond the use-

afterfree checker. Second, if the most recent request's 

HTTP status code is invalid, just the resource-leak 

checker will be engaged. Furthermore, for request 

sequences that do not conclude with a DELETE 

request and have valid renderings, the resource-

ownership checker is the only checker that is 

triggered. Finally, the user-namespace checker 

obviously adds another orthogonal dimension to the 

state space as it ran tests with an attacker token that 

was distinct from the authentication token used by 

the main driver and all the other checks.  

D. Checkers Search Methods  

For stateful REST API fuzzing, the breadth-first 

search (BFS) is the primary search technique for test 

creation in the search space specified by all 

conceivable request sequences [5]. When it comes to 

grammar, this search method has you covered. It 

covers every conceivable request and every potential 

request sequence up to a certain length. Nevertheless, 

BFS's search performance degrades with increasing 

sequence length due to the often huge search area it 

explores. Hence, BFS-Fast was implemented as an 

optimization. In contrast to BFS, which adds each 

request to every request sequence of length n, BFS-

Fast only adds each request to one request sequence 

of length n whenever the search depth grows to a new 

value n + 1 [5]. Full grammar coverage is only 

provided by BFSFast for individual requests and not 

for request sequences of a certain length; this means 

that not all conceivable requests may be explored.  

A subset of all potential request sequences is 

explored by BFS-Fast, which allows it to scale better 

than BFS.  

Sadly, this reduces the amount of infractions that the 

security auditors can actively verify. We provide a 

novel search method, BFS-Cheap, to overcome this 

restriction.  

In contrast to BFS-Fast, which aims to cover all 

potential request renderings at every stage, BFS-

Cheap follows the opposite trade-off and instead 

investigates all possible request sequences for a 

certain sequence length, but not with all conceivable 

renderings.  

In particular, BFS-Cheap handles the following 

inputs: a collection of requests (reqCollection) and a 

set of sequences (seqSet) of length n:  

For every sequence seq in seqSet, add every request 

from reqCollection to the end of seq, run the new 

sequence taking into account all potential renderings 

of req, and add no more than one valid and one 

incorrect rendering to seqSet.  

The use-after-free, resource-hierarchy, and user-

namespace checking all rely on correct renderings, 

but the resource-leak checker relies on faulty 

renderings.  

For an experimental assessment, see Section IV-B; 

BFS-Cheap is therefore a compromise between BFS 

and BFS-Fast.  

To prevent a huge sequenceSet, it investigates all 

potential request sequences up to a certain length 

(similar to BFS) and adds no more than two 

additional renderings to each sequence (similar to 

BFS-Fast). With two additional renderings for each 

sequence examined, all the security requirements 

specified in Section III-A may be actively checked, 

and the number of sequences in seqSet remains 

manageable even as the length of the sequence rises.  

Keep in mind that the "cheap" suffix is derived from 

the fact that BFS-Cheap is a cost-effective variant of 

BFS that adds no more than one acceptable rendering 

to the BFS "frontier" setSeq for every new sequence.  

As a result, less resources are generated compared to 

when all possible interpretations of each request 

sequence are investigated, as in BFS. Consider a 

request description that specifies 10 distinct kinds of 

a single resource type using an enum type. After 

producing a resource of a single flavor, BFS-Cheap 

will cease further resource creation. On the other 

hand, BFS and BFS-Fast will generate 10 identical 
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resources but with ten distinct flavors.  

Section E. Bug Hole Filling  

We describe the bucketization method that is used to 

put together comparable infractions before we talk 

about real-world instances of violations identified 

using active checkers. "Bugs" are rule infractions 

while discussing active checkers. You can trace each 

problem back to its specific request sequence. We 

generate per-checker bug buckets using the following 

approach, given this property:  

When a new issue is discovered, calculate all 

nonempty prefixes in the request sequence that 

causes  

 

beginning with the tiniest insect. Put the new 

sequence into an existing bug bucket if the suffix is 

already there. In any case, you'll need to create a 

fresh bug bucket for the updated sequence.  

We have distinct, perchecker bug buckets since the 

failure circumstances are set individually for each 

rule, but otherwise, this bug bucketization technique 

is identical to the one in stateful REST API fuzzing 

[5]. Except for "500 Internal Server Error" flaws, 

which may be caused by both the main driver and 

checkers, each defect will only be triggered by one 

checker for a certain sequence length due to checker 

complementarity.  

One instance of the new sequence will be added to 

the bug bucket of the primary driver or checker that 

triggered it, for 500 bugs.  

IV. EXPERIMENTAL EVALUATION 

Here we detail the outcomes of our trials using three 

real-world cloud services.  Section IV-A details our 

experimental setup and these services.  Section IV-B 

then compares the three search algorithms outlined in 

Section III-D.  Section IV-C details the findings, 

which include the total number of rule violations 

recorded by each checker across all three cloud 

services and the effects of different optimizations. 

 (A) Experimental Environment 

 Experiments were conducted using three anonymous 

cloud services, and we provide the results:  Azure A 

and Azure B are two management services provided 

by Azure [13], whereas O-365 C is a communications 

service offered by Office365 [16]. All three of these 

services have REST APIs that get between thirteen 

and nineteen queries.  Among the cloud services we 

examined, those three stood out due to their size and 

complexity, so we decided to focus on them.  Section 

V summarizes our overall experience with the 

various production services that we have tested so 

far, which number in the dozen or so. 

 There is a publicly published Swagger specification 

for every service that is being considered [15].  We 

follow previous work [5] by assembling the 

specifications of each service into a language for test 

creation.  Python code that can be executed is used to 

encode each grammar. 

 All the tests presented here utilized the same syntax 

and fuzzing dictionaries for a specific service and 

API.  The produced representations are not random.  

A single-threaded fuzzer, an internet-connected PC, 

and a current service membership that grants access 

to each service API were used to conduct our fuzzing 

studies.  There was no need for any additional service 

expertise or unique test setup.  In the same way as in 

[5], our fuzzer incorporates a garbage-collector that 

gets rid of dynamic objects that are no longer in use 

so that we don't go over our service quota. 

 While we test production services that are live and 

available to subscribers, we can't see what's 

happening behind the scenes of the services we test.  

When it gets a response, our fuzzer just looks at the 

HTTP status code.  The client side initiates all 

requests by sending them over the internet to the 

specified services, and then parses the results.  The 

trials described here are not completely controlled as 

we have no say over the rollout of these services.  

But we ran the same tests many times and got the 

same findings each time. 

 B. Examining Different Search Methods 

 Now we'll take a look at how BFS-Cheap, our new 

search technique, stacks up against BFS and BFS-

Fast when it comes to fuzzing actual services using 

security checkers.  Using Azure A, Azure B, and O-

365 C as our descriptors, we provide the outcomes of 

our trials with three different Azure services. 
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 Table I displays the results of separate tests 

conducted on each service using the three search 

algorithms, with a time budget of one hour each trial.  

We document the following metrics for every 

experiment: total API requests (Total Req.), 

maximum sequence length (Max Len.), number of 

tests, percentage of requests sent by main driver 

(Main.) and active checkers (Checkers.) and 

individual contribution of each checker. 

 Based on Table I, it is evident that BFS achieves the 

lowest depth for all services, BFS-Fast reaches the 

highest depth, and BFS-Cheap offers a compromise 

between the two, being closer to BFS than BFS-Fast.  

Based on how quickly each service responds, the 

total number of tests created varies across all of them.  

The overall number of tests grows dramatically for 

BFSFAST with Azure B and O-365 C, while for all 

other services, this number stays relatively consistent.  

If this growth is true for O-365 C, then 

 

to be because BFS-FAST handles these two services 

with a much lower failure rate than BFS and BFS-

Cheap. Our fuzzer, as the client, receives these 

unsuccessful requests with longer wait times. It is 

well-known that services may throttle future 

requests—that is, attempt to slow them down—by 

delaying answers to unsuccessful requests. When it 

comes to Azure B, BFS-Fast goes through with more 

tests than BFS or BFS-Cheap. This is due to the fact 

that BFS-Fast's request sequences are more in-depth, 

but they include a large number of DELETE requests, 

which are quicker to run (their replies are returned 

practically quickly).  

As before, BFSCheap falls somewhere in the middle, 

with BFS having the greatest overall percentage of 

checker tests (Checkers) and BFS-FAST having the 

lowest. As mentioned in Section III-D, the reason for 

inventing BFS-Cheap was to address the fact that 

BFS-Fast produces more tests than its competitors, 

but that it prunes its search area and engages checkers 

less often. One notable exception is the 33% increase 

in BFS-generated tests for O-365 C. More successful 

requests (refer to the preceding paragraph) likely 

caused more checker tests, which is why there was 

such a surge.  

We can see that the amount of tests generated by each 

checker differs between services from the 

information in Table I. How many use-after-free 

requests were conducted, how many resource 

creation requests failed, and how deep the object 

hierarchy is for the resource hierarchy checker all 

contribute to this amount. The user-namespace 

checker, on the other hand, is the most often activated 

and accounts for the bulk of the tests created by the 

checker.  

Next, we'll talk about how the three search algorithms 

yielded roughly identical bug counts for all three 

services.  

C. Evaluating Alternative Checker Methods  

Following our discussion of the two modes in Section 

III, we will now compare their performance.  

The Tests column in Table II displays the total 

number of requests issued during an hour of fuzzing 

using BFS-Cheap. The proportion of requests 

produced by the main driver of Section II or any of 

the four checks is also shown. You can see in the 

chart that the primary driver and each of the testers 

uncovered a certain number of distinct defects, or 

"bug buckets," in an hour of searching. The outcomes 

for both the optimal and exhausting modes are 

shown.  

The amount of tests differs among services and 

checker settings, as we can see. As anticipated, 

nevertheless, the exhaustive mode consistently 

produces a larger proportion of tests created by the 

checkers. Optimal mode allows the primary driver to 

explore more states quicker by reducing the number 

of tests produced per visited state by the checkers. 

Even though there are fewer checker tests per visited 

state in optimized mode, all three services still detect 

all the unique issues (bug buckets) identified by 

exhaustive mode. In addition, the primary driver 

discovers an additional issue using the optimized 

mode for the O-365 C service after an hour of 

searching compared to the exhaustive mode.  

The significance of the optimized checkers mode is 

further shown by an intriguing inversion that is 

shown in Table II. Our observations in Azure A reveal 

that the optimized mode generates almost twice the 

number of tests as the exhaustive option (4050 vs 

2174). This seems backwards at first glance. Our 

research led us to the conclusion that the exhaustive 

mode of the user-namespace checker generates tests 

with much longer response times for Azure A. While 

this particular checker does more tests in exhaustive 

mode than in optimized mode, the total test 

throughput is slower due to the presence of costly 

operations (i.e., high latency).  

We discovered and submitted a total of seven distinct 
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issues to the creators of these three services 

throughout our testing. The main driver detected 

4,500 bugs, and each of the checks (except the user-

namespace checker) found three flaws. Several 

intriguing bugs discovered by the checkers proposed 

in this research will be covered in the part that 

follows.  

V. EXAMPLES OF REST API 

SECURITYVULNERABILITIES 

So far, we have successfully fuzzed three production 

Azure and Office 365 cloud services that are 

comparable in size and complexity to the ones 

mentioned above.  Nearly every one of these services 

has a couple of new problems discovered by our 

fuzzing.  Our new security checkers have found rule 

violations, accounting for about one third of the 

issues, while "500 Internal Server Errors" accounts 

for around two thirds.  The service owners were 

notified of these issues, and they have all been 

resolved. 

 We stress that security testers boost trust in the 

service's overall dependability and security even if 

they don't uncover any problems; this is because they 

are more certain that the rules they verify cannot be 

broken. 

 The security significance of these issues is discussed 

in this section, which includes instances of actual 

problems discovered in Azure and Office 365 

services that have been deployed.  We take 

precautions to protect the privacy of those services by 

masking their names and other identifying 

information. 

Because (1) it tries to re-use the deleted resource in 

Step 3 and (2) the result from Step 3 differs from the 

anticipated "404 Not Found" response, the Use-after-

free checker finds this. 

 Resource-hierarchy violation in Office365.  The 

following issue was found by the resource-hierarchy 

analyzer in an Office 365 messaging service that 

allows users to compose messages, react to them, and 

modify them. 

 1) Make a first message called msg-1 using the 

POST request to /api/posts/msg-1. 

 Make a second message called msg-2 and send it 

using the POST method to the address 

/api/posts/msg-2. 

 3) Make a reply-1 to the first message (using the 

POST request /api/posts/msg-1/replies/reply-1). 

 4) Use msg-2 as the message identification and edit 

reply-1 using a PUT request (with the syntax PUT 

/api/posts/msg-2/replies/reply-1). 

 Despite expecting a "404 Not Found" error, the last 

request in Step 4 unexpectedly gets a "200 Allowed" 

answer.  This infraction of the rule shows that the 

reply-posting API implementation does not examine 

the whole hierarchy when verifying the reply's rights. 

 If the validity tests for the hierarchy are missing, it 

might be possible for an attacker to circumvent the 

parent hierarchy and access child items. This could 

lead to security issues. 

 Azure instance experiencing a resource leak.  A 

different Azure service had the same issue due to the 

resource-leak checker. 

 1) With a PUT request, create a new resource with 

the name X and type CM. The resource should have a 

certain malformed body.  A "500 Internal Server 

Error" is the result, and that's a problem in and of 

itself. 

 2) If you want a list of all CM resources, you'll get 

an empty list. 

 Third, using a PUT request, create a new CM 

resource with the same name X as in Step 1, but in a 

different area (e.g., US-West instead of US-Central). 

 An unexpected "409 Conflict" rather than the 

anticipated "200 Created" is returned by the last 

request in Step 3.  The service has entered an 

inconsistent state due to this behavior, which was 

caused by the unwanted sideeffects of the 

unsuccessful request in Step 1.  That the user's 

perception is accurate is shown by the GET request in 

Step 2; the CM resource with the ID X that was tried 

to be created in Step 1 has not been generated. 

 Step 3's second PUT request, however, demonstrates 

that the service retains memory of the previous PUT 

request's unsuccessful attempt to create the CM 

resource X.  Because these unsuccessful resource 

creations are (correctly) not counted against the user's 

resource quota, an attacker could theoretically build 

an unlimited number of these "zombie" resources by 

repeating Step 1 using numerous different names. 

This would allow them to surpass their official quota.  

But it's obvious that some part of the backend service 

is remembering them (wrongly). 

 Another Case in Point:  A DoS Attack on Resource 

Accounting using Anger. 
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 During our five hours of fuzzing another Azure 

service, we unintentionally caused a significant 

decline in its health.  What follows is a synopsis of 

the research about its origin. 

 For our fuzzing program to stay under its cloud 

resource restrictions, we implemented a trash 

collector.  Our garbage collector ensures that the 

number of active resources never exceeds limits by 

eliminating (using a DELETE request) resources that 

are no longer needed. For example, if a default quota 

for a resource type Y is 100, then no more than 100 

of that type may be generated at any one moment.  If 

we didn't have trash collection, our fuzzing tool 

would usually hit its quota restrictions in minutes and 

stop exploring state space. 

 Requests to generate resources of a certain type—

let's call it "IM"—through this Azure service trigger 

additional processes that take minutes to perform in 

the service backend, but they deliver a response 

promptly.  Similarly, deleting an IM resource just 

takes a few minutes and provides a response just as 

fast.  While these PUT and DELETE requests indeed 

update IM resource counts towards quotas, they do so 

much too promptly and without waiting the many 

minutes really required to do the operations.  

Therefore, an attacker may create-then-delete IM 

resources rapidly without going over their limit, 

while simultaneously initiating a deluge of backend 

operations and ultimately overwhelming the backend 

service.  We unintentionally set off a Denial-of-

Service attack using our fuzzing tool. 

 To address this security hole, we should update the 

use counts for DELETE requests to their quotas only 

when all delete backend operations are finished, 

which is usually a few minutes later for IM resources.  

By blocking further IM resource-creation PUT 

requests until previous DELETE requests are entirely 

finished, the quantity of backend jobs is still linearly 

limited by the official limitation. 

VI. RELATED WORK 

An extension of stateful REST API fuzzing is our 

work [5]. To automatically produce sequences of 

requests that meet the specification, a fuzzing 

language is used in conjunction with a Swagger 

specification of a REST API. Instead of the user 

having to manually build a language like in classic 

grammar-based fuzzing [20], [22], [24], stateful 

REST API fuzzing automates the development of a 

fuzzing grammar. The model-based testing [27] 

finite-state-machine model of the system being tested 

is the basis for the BFS and BFS-Fast search 

techniques. In order to improve upon stateful REST 

API fuzzing, this paper does two things: first, it 

introduces a set of security rules for REST APIs and 

matching checkers that can efficiently test and detect 

compliance with these rules; and second, it 

introduces BFS-Cheap, a new search strategy that 

provides a compromise between BFS and BFS-Fast 

when employing active checkers.  

You can use HTTP-fuzzers to test REST APIs since 

all of their requests and replies go over the HTTP 

protocol. Fuzzers can capture and replay HTTP 

traffic, parse the contents of HTTP requests and 

responses (such as embedded JSON data), and then 

fuzz them using either pre-defined heuristics or user-

defined rules. Examples of such fuzzers are Burp [7], 

Sulley [23], BooFuzz [6], the commercial AppSpider 

[4], and Qualys's WAS [21]. Recent extensions to 

tools that record, parse, fuzz, and replay HTTP traffic 

have made use of Swagger standards to assist the 

fuzzing of HTTP requests via REST APIs [4], [21], 

[26], [3].  

Unfortunately, these tools are limited to fuzzing the 

parameter values of individual requests and do not do 

any global analysis of Swagger specifications. As a 

result, they cannot construct novel request sequences. 

This is because their fuzzing is stateless. So, it's not a 

good idea to add active checks to stateless fuzzers. 

Our approach, on the other hand, adds active checks 

that target particular REST API rule breaches to 

stateful REST API fuzzing.  

Due to their origins as extensions of more 

conventional web-page crawlers and scanners, most 

HTTP-fuzzers are able to check a wide variety of 

properties specific to HTTP. For example, they can 

ensure that responses use proper HTTP-usage and 

even detect cross-site scripting attacks or SQL 

injections when entire web pages with HTML and 

Javascript code are returned. But most REST APIs 

don't provide web pages in their answers, so those 

checking skills aren't useful for them.  

Our study presents new security criteria that are 

tailored to REST API use, in contrast to HTTP-

fuzzers and web scanners. These regulations are 

relevant to security because an adversary might 

potentially utilize their infractions to compromise a 

service's integrity or get sensitive data or resources 

without authorization. On the other hand, we don't go 

into detail on how to verify other REST API use 

criteria [9] in this work. For example, we don't cover 

request idempotence, which means that sending the 

same request many times won't change the result.  

Surprisingly, there is a lack of documentation on how 

to utilize REST APIs securely, despite their 

popularity.  

Authentication token and API key management is a 
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common theme in security recommendations from 

groups like OWASP [19] (Open Web Application 

Security Project) and publications on REST APIs [1] 

and micro-services [17]. There is a lack of specific 

instructions on how to manage resources and validate 

inputs using the REST API. The four security rules 

presented in this work are novel, as far as we are 

aware.  

In Section III, we utilized the term "active checker" 

from [10] to describe our checkers. Unlike 

conventional runtime verification, which consists of 

only monitoring API request and response sequences, 

our checkers also create new tests to identify rule 

violations. Our approach is based on using numerous 

independent security checkers at the same time, as 

described in [10]. However, we do not create 

additional tests by symbolic execution, constraint 

formation, or solution, as was done in [10]. Since our 

fuzzing tool and its checkers only see REST API calls 

and answers, they are unable to discern the inner 

workings of the services that we test. It would be 

beneficial to delve more into this possibility in future 

study, since cloud services are often intricate 

distributed systems with components written in 

various languages. Consequently, generic symbolic-

execution-based techniques may appear difficult.  

Pen testing, which involves security professionals 

reviewing the architecture, design, and code of cloud 

services from a security standpoint, is the major 

approach used today to assure the security of cloud 

services.  

Pen testing is costly, time-consuming, and has 

restricted coverage because of how much manual 

effort is required. Fuzzing tools and security 

checkers, such as those covered in this article, may 

supplement pen testing by partially automating the 

detection of certain types of security flaws.  

VII. CONCLUSION 

To identify and protect RESTful APIs and services, 

we laid down four guidelines.  To further automate 

testing and detection of rule violations, we 

demonstrated how to add active property checks to a 

stateful REST API fuzzer.  Using the fuzzer and 

checkers outlined in this work, we have successfully 

fuzzed about a dozen production Azure and Office-

365 cloud services.  Every one of these services has a 

couple of new vulnerabilities discovered by our 

fuzzing efforts.  Our new security checkers have 

identified rule violations as accounting for about one 

third of these issues, while "500 Internal Server 

Errors" accounts for around two thirds.  We notified 

the service owners of all the issues, and they have all 

been resolved. 

 Vulnerabilities in security may be easily identified 

when the four criteria presented in this article are 

violated.  Our current bug "fixed/found" ratio is 

virtually 100%, indicating that all of the service 

owners have taken the issues we detected seriously.  

Also, it's better to repair these problems now than to 

risk a real catastrophe, which may be caused by an 

attacker or happen accidentally, and the results would 

be unpredictable.  Lastly, the fact that our fuzz testing 

method does not produce any false positives and that 

these errors are repeatable is helpful. 

 On what scale do these findings apply?  The only 

way to find out is to examine additional attributes and 

run more REST API-based bug and vulnerability 

scans on more services.  Considering the current 

surge in REST APIs for online and cloud services, it 

is surprising that there is surprisingly little advise 

about the security-related use of REST APIs.  In this 

regard, our study contributes four rules whose 

infractions are important to security and which are 

not easy to verify and resolve. 
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