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Abstract—  

In order to use machine learning models developed 

for 2D data, this research investigates several 

methods for converting 1-dimensional time-series 

data into 2-dimensional pictures. Markov transition, 

Poincaré plots, spectrograms, heatmaps, direct 

plots, phase space transformation, and Gramian 

angular fields are among the eight approaches that 

are presented. We put these techniques to the test by 

modeling a grid-connected photovoltaic (PV) system 

with a shorted string defect and one without. All 

approaches use the same fixed window size of 256 

sample points to record the fault and no-fault 

replies. Python 3 programming on a laptop with 

little computational capabilities is used to evaluate 

all transformation methods. A one-channel 

grayscale picture or a three-channel RGB image 

may be produced by each modification. You have 

the option to raise or reduce the dimensions of the 

created picture when storing it. Various approaches 

to converting 1D time-series data into 2D visuals for 

use in machine learning have resulted in distinct 

visual representations of the shorted string fault and 

a no-fault.  

Topics covered include 2D images, signal 

modification, problem diagnostics, and machine 

learning/deep learning.  

I. INTRODUCTION 

Machine learning (ML) and deep learning (DL) are 

growing in popularity as AI finds more and more uses 

in many fields. There is a notable use of AI in the 

power system's many sub-disciplines, particularly 

those dealing with microgrids, RES, and the energy 

utility grid [1]. In these domains, AI finds use in 

optimization methods to improve power quality 

generation, control strategies, and failure and fault 

diagnostics [1]. Power generation's CO₂ emissions 

have been steadily declining as a result of developed 

and developing nations' joint commitment to the 

Kyoto Protocol [1]. For this reason, renewable energy 

sources (RES) are gradually replacing more 

conventional power generating methods that rely on 

coal and other fossil fuels. Among these RES, you 

may find solar, biofuel, wind, and geothermal power, 

among others [2]. Photovoltaic (PV) generation 

systems for solar energy are one of the fastest-

growing options because of their many benefits, such 

as being silent, inexpensive, easy to integrate, low 

maintenance, pollution-free, dependable, and having 

an almost infinite supply [3]. Over time, PVS will 

have the same malfunctions as any other system.  

Converters, inverters, connectors, protective devices, 

and PV modules are all prone to a number of faults 

that might lead to these failures [1, 4]. The primary 

reasons for these problems may be attributed to 

external operating circumstances, such as dust or dirt 

in the modules, converter and/or inverter failures, 

shadowing, manufacturing incompatibilities, and 

module aging [1, 4]. Tragic flaws in PVS may be 

categorized into four primary types: line-to-line 

faults, arc faults, ground faults, and mismatch faults 

[1, 4]. These problems, if left unattended, may lead to 

fires, decreased profits, and even death [1, 4].  

In order to know what to do in the event of a mistake, 

it is essential to be able to identify and categorize 

them. Understanding the nature of the issue and 

putting preventative measures in place to ensure it 

does not happen again is another benefit of PV fault 

diagnostics. Furthermore, methods to address these 

shortcomings may also be devised. It also helps in 

making the PV system last longer and more 

efficiently. Several approaches to fault diagnosis in 

photovoltaic (PV) systems using ML and DL have 

been covered in the review given in [1]. The use of 

DL models such VGG16, VGG19, 3DCNN, ResNet, 

AlexNet, GoogleNet, and vision transformers are 

among the strategies used for PV defect diagnostics 
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[5, 6]. Two- or three-dimensional pictures captured 

from above or on-site with regular cameras or 

thermal imaging devices (infrared cameras) are 

common inputs for these DL designs [1]. In addition 

to taking pictures with regular or infrared cameras, 

you may also use sensors to measure various 

electrical characteristics of the PV system, including 

DC voltage (V), current (I), and power (P) [1]. The 

responses, however, are voltage, current, or power 

measurements plotted against time; these parameters 

are, nonetheless, given as time-series signals. The 

information gathered in these formats is, therefore, a 

1D signal. It is feasible to utilize a 1D signal with 

some current DL models, however using 2D pictures 

as inputs to the DL models stated previously is more 

simple and easy. Furthermore, a 2D picture retains far 

more data when converted from a 1D signal of the 

same duration in terms of the sample. As an example, 

think about making a 2D picture from a 1D power 

signal that has 512 sample points. The resultant 

picture dimensions are 512 pixels by 512 pixels in 

this instance. By adding additional dimensions, we 

can get a more accurate picture, which improves the 

characteristics we can learn from the data. To add 

insult to injury, gathering RGB or IR image data with 

UAVs is weather dependent and could miss 

concealed defects that are often only detectable using 

electrical means. In order to overcome this 

restriction, the current study presents several ways 

for converting 1D data into 2D pictures. These 

approaches may find use in photovoltaic (PV) 

problem detection.  

II. DESCRIPTION OF METHODS 

A. General Framework of PV Fault Diagnosis 

Using 2D Data 

Sensors installed on the PV system may collect 

several kinds of data, including power, current, and 

voltage.  

Making a replica of the PV system under study is 

another option for gathering information [1]. After 

that, we'll model several scenarios that reflect the 

various kinds of errors. Importing 1D signals into 2D 

photos while preserving and improving the 

information within the signals is the first step in using 

some or all of these data as input to a preferred DL 

model that accepts 2D images. When converting the 

signal to a picture. One consideration should be the 

amount of sample points or window size that 

provides the relevant information. You should pay 

close attention to this location. If the information 

needed to classify the existing defect is not included 

in the transformed picture. So, the results of the 

detection or classification process can end up being 

erroneous. The produced information may be saved 

in any format that can produce 2D array features, 

such as.jpg,.png,.tiff, or any similar format.  

Annotating or labeling the data based on the sorts of 

flaws that correlate to each picture is the next step 

after image generation. If you're looking for an open-

source labeling tool, there are plenty of options 

available online. It is also possible to label data while 

preparing it to be used in a chosen DL model or when 

transforming it from signal to picture.  

To summarize, Fig. 1 shows the overall flow diagram 

of the approach for utilizing the data for PV problem 

diagnostics.  

 

B. Methods of Signal to Image Transformation 

1) Recurrence Plot 

One technique to visualize time-series data [7] like V, 

I, or P is via a recurrence graphic. It is a graphical 

representation used for time-series data analysis. 

Furthermore, a recurrence plot is useful for showing 

patterns that appear more than once.  

To understand recurrence plots, it's helpful to think of 

a timeseries _ _ ___,…, __. By using a recurrence 

plot, we can extract and see the distances between the 

trajectories of each member in set _. Presented below 

are the extracted trajectories:  
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where m is the number of trajectories' dimensions 

and ε is the time delay. Each pixel in the final picture, 

which is [7], is represented by the pairwise distance 

between each trajectory in _ and that in __ by the 

recurrence plot, _,_.  

 

the Heaviside function, the norm operation, and the 

threshold are all represented by || ||.  

Alteration of the Gramian Angular Field  

The cosine similarity between each pair of data 

points in a time series is preserved by the Gramian 

matrix, which is formed by the gramian angular field 

(GAF) transformation [8]. The next step is to 

transform this Gramian matrix into a picture, where 

the brightness of each pixel stands for the degree of 

similarity between the respective data points. Two 

kinds of GAF transformations are the Gramian 

angular difference fields (GADF) and the Gramian 

angular summation fields (GASF). The mathematical 

expression of the GAF transformation process is as 

follows. Suppose you have a time series * _ _+_, +,, 

+-,…, +._ with N points in the sample. Using Eqs. 3 

for GASF and 4 for GADF, we shall rescale or 

normalize each element in X within the range of /_1, 

10 for GASF and /0,10 for GADF, respectively.  

 

Now we can use the arccosine function to encode 

each angle value and time stamp as the radius r, and 

we can project the rescaled *= into the polar 

coordinate system.  

 

In the polar coordinate system, the timestamp is 

denoted by _, the angle by ∅, and N is a constant 

factor that normalizes the range. To define a 

trigonometric sum or difference between any two 

coordinate values, one may use Equation (5) to get 

the modified polar coordinates. An expression for the 

matrix expressing the temporal correlation for each 

point within a specified time range of GASF is given 

by Equation (6) [8].  

 

The boundary of each element in Eq. 4 is /0, W0 

when GASF (3) is used, but it is in the range of /0, 

X,0 when GADF is used.  

3. The Transformation of the Markov Transition Field  

The Mean Time Fluctuation (MTF) transformation 

involves visualizing a time-series by considering the 

changes in values or states within its components [9]. 

Think about the time-series data, denoted as * __+_, 

+,, +-,…, +_, where the quantile bins Q are 

determined and each xi Î X is given a matching bin qj 

(where j is a subset of Q). Building an MTF matrix M 

using the components shown in Eq. 7 [9].  

 

The element mij represents the transition probability 

of qi → qj in equation (7). Consequently, the typical 

Markov transition matrix is spread out according to 

the input signal's temporal locations. After the multi-

span transition probabilities of the time series are 

encoded, each element in (7) may be written as 

&__|___de, where k is the time interval.  

4) Graphics display  

A spectrogram is the end result of converting a signal 

to a picture using the short-time Fourier transform 

(STFT). In order to determine the STFT of a certain 

signal, one may use the formula [10].  

 

The signal +_H~ with respect to frequency f and time 

shift g is represented by the Short-Time Fourier 

Transform L_M_ _+_H , f, g_, STFT in Eq. 8, where 

h is the frequency variable. The complex exponential 

capturing the frequency component at h is 

represented by F_kH, and the term j__ _ g 

corresponds to the window function. The STFT is 

obtained by dividing the signal +_H into overlapping 

windows j__ _ g that cover the whole time. The 

Fourier transform is then applied to each window that 

follows. The use of j__ _ g to taper the window edges 

reduces spectral leakage. When shown visually, the 

resultant STFT becomes the spectrogram. The short-
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time Fourier transform (STFT) is obtained by 

introducing sliding windows into the input signal at 

brief intervals. The spectrogram's frequency and 

temporal resolution are affected by the window's size 

and overlap. Reducing the size of the window 

improves frequency resolution but increases the size 

of the temporal resolution, and vice versa. The 

spectrogram equivalent L_f, _ of STFT _M_ _+_H~, 

f, g_ is represented by Equation 9 [10].  

 

In each element of STFT, the square of the magnitude 

of STFT, denoted as | |, will become L_f, _.  

Methods for Converting a 1D Signal into a 2D Image  

According to the literature, the most popular forms of 

signal-to-image conversions are the ones mentioned 

above. The good news is that there are solutions for 

the problem of signal-to-image conversion. A few of 

the approaches are listed below.  

a) Signal characteristics plotted directly.  

Implementing this strategy does not need complex 

mathematics or coding abilities. The basic premise is 

to use pre-existing functions and libraries in any 

programming language, such Python or C++, to 

directly record the signal's behavior over a certain 

time period or number of sample points. Direct 

picture conversion of the collected signal's behavior 

follows [11]. b) Poincare diagrams  

A Poincare plot is a graphical representation of the 

connection between two subsequent data or sample 

points in a time-series signal [12]. By charting the 

signal's history value against its present value, this is 

generated in the form of a scatter plot.  

One possible output of any DL design is a scatter 

plot. (c) A heatmap  

A time-series signal may be more complexly shown 

using a heatmap. The picture is created by assigning a 

color to each sample point's output value (I, V, or P) 

and then plotting them on a two-dimensional grid. 

The value of the quantity at a certain instant is shown 

by the color of each pixel in the heatmap [13].  

d) Reconstructing the Phase Space  

In order for phase space reconstruction to function, 

the initial assumption is that each time-and interval-

varying variable's value represents the coordinates of 

a single point in an m-dimensional phase space [14]. 

A nonlinear system may be graphically represented 

by explaining a set of data points in the phase space 

shown above.  

III. RESULTS 

In order to demonstrate that each approach is capable 

of successfully converting the signal into a picture. 

The methods are tested using time-series data from 

the research by YY. Hong and R. Pula (2022, 2023), 

which includes a no-fault condition (N) and a shorted 

string fault (SS). Based on real-world PV systems in 

operation, the data come from simulated grid-

connected systems [1, 5]. Figure 2 shows the results 

of the time series analysis of PV DC power. Python 3 

is the target of the transformation process. We 

conducted all the changes we covered before on a PC 

with an IntelR Core™ i7-8550U CPU @ 1.80GHz, 

with a maximum speed of 1.99 GHz, 32.0 GB of 

RAM loaded, and the graphics processing unit (GPU) 

turned on if desired. This study, however, does not 

make advantage of GPUs.  

 

Several ways for transforming signals into images are 

sent into the DC power that follows the boost 

converter (Figure 2). Starting at 3 seconds and 

continuing until 3.05 seconds, a photovoltaic (PV) 

system is simulated to operate in both the no-fault 

state (N) and a shorted string fault (SS). Three cycles 

of the typical 60Hz power cycle correspond to this 

period. The analysis is conducted using a single 

cycle, which corresponds to 256 sample points. As a 

result, adding 0.05/3 seconds to the original 3 

seconds increases the window size for collecting the 

answer to the shorted string error. Figures 3a–3D 

show the results of the no-fault and shorted string 

fault scenarios as seen using the recurrence plot and 

GASF, respectively.  
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Equation 2 yields a.png picture with a size of 256 × 

256 pixels showing the shorted string fault of 

recurrence plot. Values for RGB colors might be 

included in the output. A 1-channel grayscale picture, 

however, is sufficient, according to the author's 

experience. As shown in Figure 3a (N) and Figure 3c 

(SS), the value of a pixel in the produced picture 

increases as its color becomes lighter. Per pixel, there 

is a value between zero and two hundred fifty.  

Figure 3b (N) and Figure 3d (SS) show the produced 

images from GASF; these images may be saved as 

either a grayscale picture with one channel or an 

RBG image with three channels, much like a 

recurrence plot.  

Section B. Maximum Fluctuation Theory and 

Spectrogram The results  

Figure 4 displays the N and SS conditions for the 

MTF and spectrogram that were obtained. Figure 4a 

and 4b show the no-fault circumstances for the MTF 

and spectrogram, while Figure 4c and 4d show the 

pictures with the shorted string fault. \ 

 

 

Figure 4a (N) and Figure 4c (SS) show that the pixel-

value and appearance characteristics of the MTF-

generated images are similar to those of the 

recurrence plot and GASF. Figure 5b (N) and Figure 

5d (SS) show that the spectrogram-generated images 

have a 3-channel RGB color format, where darker 

reds indicate higher pixel values and lighter colors 

lower pixel values, creating a visual representation 

where the intensity of the color is directly 

proportional to the pixel value. 
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Figures 5a and 5c show the produced images, which 

are the real reaction of the 1D signal under no-fault 

and shorted string fault conditions, respectively, using 

a direct plot at the moment of the fault that covers 

256 sample points. In Figures 5b and 5d, you can see 

poincare plots that show the results of a series of 

shorted faults. It is quite easy to convert a 1D signal 

to a 2D picture by simply charting and preserving the 

size of the recorded window. The straight plot 

approach is, without a doubt, the quickest to do. You 

can see that the RGB format is used for the plotted 

picture. However, it is not necessary in this sort of 

transformation as the color of the generated picture is 

not a large element in distinguishing the 

characteristic of a supplied signals. Therefore 1-

channel grayscale picture is adequate to this type of 

modification. The pictures that are produced using 

poincare plots appear in Figure 5b and Figure 5d as 

scattered plots, but with a different representation. 

Just like in Figures 5a and 5c, the color does not play 

a significant role in this transformation either.  

 

 

Figure 6c shows the outcome of a 3D cube 

comprising the sinusoidal features of a shorted string 

fault signal, which is used to project the picture of 

phase space reconstruction.  

Fig. 6c shows the final product, a three-channel RGB 

picture that includes the color information from the 

3D-projected cube's backdrop. If a more complicated 

defect, such an arc fault, is present in a PV system. It 

is possible that this kind of change may be rather 

helpful. The heatmap produces a three-channel RGB 

picture, as seen in Figure 6b. In the event when every 

pixel's red, green, and blue channel values are 

identical. The characteristics of the final image can 

be captured with just one channel image.  

Unfortunately, in both the no-fault (Fig. 6b) and 

shorted string (Fig. 6d) output images, there is an 

issue. Notable visual traits are present in the final 

photos. When comparing the no-fault condition 

depicted in Fig. 6a using phase-space reconstruction 

to the shorted string fault, one can notice a distinct 

feature. The sample points are situated in the four 

corners of the image, as can be seen.  

Depending on how complicated the faults are, 

different transformations can be used for PV fault 

diagnosis. Mel-Frequency Cepstral Coefficients 

(MFCC) and other methods primarily used in 

biological data can also be investigated for potential 

use in other fields, like power system analysis.  

There are some limitations to the work that has been 

presented. A significant drawback is that the 1D data 

is not preprocessed in any way, prior to the 2D 

transformation. This includes neither filtering or 

removing noise.  

Hence, signal noise will be carried over into the 

processed 2D pictures and might affect the 

classification step that follows. Nevertheless, it 

should be mentioned that noise reduction may be 

handled before to the transformation step. You can 

use filters and other traditional noise removal 
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techniques, or you can use deep learning's 

autoencoder-decoder models. The results that were 

shown also only considered the most basic 

parameters for the methods that were introduced. 

This means that the study did not investigate all 

possible configurations that may have improved the 

results. However, it should be mentioned that this 

limitation is not impossible to overcome, since there 

are already Python libraries that offer functionalities 

that are similar to the ones presented in this work. 

This makes it easy to conduct additional 

configuration optimization and exploration.  

Not to mention that no-fault and shorted string fault 

were the only kinds of situations that were considered 

in this study. While these conditions were the primary 

focus, there exist various other fault conditions that 

could impact the performance and generalizability of 

the presented methods. Future research may consider 

expanding the scope to encompass a broader range of 

fault conditions for a more comprehensive 

evaluation.  

IV. CONCLUSION 

This research presents a number of new techniques 

for converting 1D data into 2D pictures. After 

collecting and experimenting with the resultant 

photographs from each change, they were finally 

shown. With an emphasis on the shorted string fault 

in a grid-connected PV system model developed from 

an actual installation, each transformation was tested 

using real data from both fault and no-fault scenarios. 

Each transformation has the option to produce a 1-

channel grayscale or 3-channel RGB color picture as 

its output. When applied to certain machine learning 

(ML) or deep learning (DL) architectures, the output 

picture size is also customizable to fit personal 

preferences and system requirements. Several ML 

models use the produced pictures of no-fault and 

shorted string faults, taking advantage of their unique 

peculiarities.  

But this uniqueness may not always be the case; prior 

research has shown that when 1D signals are 

translated into 2D pictures, certain defects seem quite 

similar [1, 5]. However, DL models have shown to be 

useful in properly diagnosing fault types from photos, 

even in cases when the visual features are almost 

similar.  

V. FUTURE WORKS 

Carrying out tests utilizing data collected from PV 

system sensors and simulations is an important part 

of the current study. Several deep learning (DL) 

techniques that can take 2D pictures as input will be 

compared in this study. We will combine the electric-

based method with more advanced DL techniques to 

test their efficiency in signal-to-image 

transformation. Future studies will also investigate 

the possibility of incorporating other state-of-the-art 

technologies, such as quantum computing and edge 

computing. Given the state of the art in computing, 

the new area of hybrid quantum machine learning 

offers an interesting prospect for research. This field 

combines advanced DL models with quantum 

computing technology.  
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