
44 
 

 



45 
 

                                                             ISSN2321-2152  www.ijmece .com 

                                                                         Vol 8, Issuse.4 Nov 2020 

 

A MESOCHRNOUS TECHNIQUE based FPGA implementation of multibit 

flip-flops 

P.Shankar1Dr.Tejawath Ramakrishna2, 

 

Abstract: 

More relaxed clocking techniques such as mesochronous clocking replace completely sync clocking to enhance system composability and 

simplify timing closure. Under this regime, the modules on two ends of the mesokronous interface get the same clock signal, which works at 

the same clock frequency, but an unknown phase relationship might occur on the margins of the arrival clock signals. Clock synchronisation 

is required if data is sent across modules. In this short we introduce a unique mesochron first-input dual-clock first-output buffer (FIFO), 

which can manage clock synchronisation and temporary data storage, syncing data implicitly through explicit flow control synchronisation 

alone. Even if the transmitter and receiver are separated by a lengthy connection whereby delay cannot fit inside the intended operating 

frequency, the suggested system can function well. In such cases, the suggested mesochronous FIFO may be modified to accommodate delays 

with multi-cycle connections modularly and with little changes to the baseline design. The novel architecture is shown to produce a much-

reduced cost implementation compared to prior state-of-the-art mesochronous FIFO architectures. 

I. INTRODUCTION  

The main development architecture in the field of 

rapid computer interfaces is Multiprocessor System-

on-Chips (MPSoC). The evolution of new 

technologies has brought forth the necessity for 

MPSoC. However, the computer overhead and 

energy requirements have resulted in its optimization 

required for such a sophisticated design. The 

designers are dealing with this problem in two ways, 

by adapting the design to the application limit[1] and 

by scaling the operation to a restricted voltage / 

frequency operation[2,3]. Whereas adaptation is an 

optimum technique, the overall design is substantially 

high [4]. The design technique comprises monitoring 

the communications protocol and signal interface 

between different components [5] in the processor 

unit while optimising the overhead power and 

processing. The variety of the design units and the 

components utilised in this design are also a key 

restriction in the MPSoC optimization process[6]. 

The optimization restrictions also limit the operating 

frequency and system performance[7] in certain 

applications. This is why the design approach is 

described with an internal clock allocation updating 

process[8] and a FIFO-based technique for 

synchronisation across many units in sub unit 

activities. Here each core unit is linked to 

synchronise data exchange across various core 

units[9].Each of the IP core  

Professor1, Assistant Professor2, 

Department of ECE Engineering,  

Pallavi Engineering College, 

Mail.id: ec_shankar@pallaviengineeringcollege.ac.in, Mail ID:pectejawath@gmail.com, 

Kuntloor(V),Hayathnagar(M),Hyderabad,R.R.Dist.-501505. 

 

 



46 
 

processor blocks employs a FIFO dual clock design. 

However, if all IP blocks are using a dual-clock FIFO 

design for one common purpose, the resource is more 

at risk than the provision, because the configuration 

of all IP interfaces must be conservative, as the speed 

and throughput of each IP core is different[10]. For 

example, the buffering of this synchronisation 

parameter should be modified for a worst-case 

scenario based on the comparison between source 

and receiver frequency [11]. Furthermore, the 

descriptive existence of frequency ratio information 

(such as the interconnection of a chip operates at a 

quicker rate than the interconnected IP units) together 

with performance restriction information can lead to 

twin high impact specializations[12]. Therefore, the 

FIFO dual clock design has a wide area and power 

conservation at last. Different uses are given in [12-

17]. Since the designs do not employ clocks, the 

synchronisation process is difficult to accept between 

two clock variations[18]. The delay factor in the 

clock system is ignored while synchronising the 

various core units. This restricts the synchronisation 

in this way. Recent advancements show that the delay 

factor in MPSoC architecture is minimised. The lag 

due to resource allocation is not overcome at the time 

of the processing. Here each instruction process has a 

delay in processing the clock; clock delays must be 

assigned and the transition to that assignment results 

in the system processing delays. A novel latency 

monitoring technique is given in this article by 

providing the enhanced clock library function. This 

technique minimises the interchange of data and the 

delay in instruction and overcomes the overhead 

latency during instruction. This document is 

described in 6 sections to present the paper. Section 2 

outlines the MPSoC design approach to library 

coding. Section 3 describes the recommended 

technique for library code for Mesochronous 

operations to measure latency. Section 4 showed the 

results of the simulation for the strategy devised and 

the conclusion offered in section 5. 

II. DISTRIBUTION OPERATION IN VA-

MPSOC  

CoreVA-MPSoC shows the target application for an 

integrated and energy-efficient hierarchical 

interconnect architecture. In this CPU cluster, 

multiple core CPUs in the cluster that share a 

comparable address space in the core are connected 

nicely. Every CPU may read and write local data 

from other CPUs through a bus-based 

interconnection at its original design. The CPU is 

connected to a cluster interconnection using a FIFO 

buffer to prevent cycles of penalty operations. The 

topology of the standard data bus width is specified 

when the processing unit is designed. For example, 

Advanced Bus Architecture Microcontroller 

(AMBA) utilises an AXI4 Interconnect Standard 32 

bit or 64 bit data bus width. For particular addresses, 

AXI4 defines address and data transmission. In 

addition, distinct channels for reading and writing 

enable simultaneous read/write (R/W) bus requests. 

Steps can be added for the connection registration to 

simplify the compensation for space and route time, 

increasing the frequency to a maximum of MPSoC 

clocks. Here, the architecture does not allow the best 

read requests as it does not work for all cores in the 

sequence of execution. The CPU boasts the lowest 4-

clock operating cycle CPU latency. For Share Bus 

implementing a total of five intermediaries (1 per 

channel) are required and for each operation 

(read/write) two intermediaries are required for 

crossbar linkages. The Network Interface (NI) 

interface is formed during the two CPUs connection 

via the Network-on-Chip (NoC) interface. Each CPU 

cluster is placed in a 2D structure via a separate X 

and Y coordinate index. For all cluster memory and 

units, a common address space is employed in the 

cluster. NI bridge-based communication during the 

interchange of CPU clusters and packets via 

interconnections with routers. As such, it offers the 

flow control capable of decreasing the operating 

duration of the CPU for this contact in the CPU core. 

In order to do so, packet data is saved and retrieved 

from all local memory of the CPU directly. CPUs 

therefore take use of local memory access delays. NI 

also functions as a DMA controller through the 

distribution of parallel data to the CPU. NI is 

connected to the cluster in the original setup through 

a master and a slave port. Packets may be routed to 

various R/W separation channels. Where the AXI 

master port of NI can be sent whilst writing data at 

the same time. 

In the exchange of schedules for different CPU 

interfaces an effective communication strategy is 

necessary. CoreVA-MPSOC[19] employs a 

communications paradigm with a single 

communication channel integration. This method 

offers more scalability and efficiency than common 

memory ideas, which can interrupt memory accesses. 

In general, one job reads and writes on one or more 

output channels from one or more input channels. 

Each channel controls the data storage of one or more 

R/W. Synchronization is regulated by granularity of 

buffer size. When a channel's buffer requests, the 

CPU doesn't acquire enough data or no free basic 

buffer may be written. 



47 
 

However, since data is received via a channel, any 

memory location in that buffer is accessed by random 

application. Moreover, no additional synchronisation 

is required. When the work has been completed, the 

CPU communicates with the other units in order to 

exchange the status and reuse the registry. The 

pooling of resources therefore minimises the 

overhead. The allocation delay is nonetheless 

significant. The delay due to resource allocation and 

sync is also significant, as time delay computation is 

restricted to the data interface between various CPU 

units utilising the NoC interface. The NoC operates 

as a bus arbitrator as a data exchange routing bus. 

This exchange shows a substantial delay that leads to 

a reduction in processing speed. Therefore, the time 

limit, which is focused on in this article, must be 

decreased. A novel delay mapping technique 

employing the time stamp library is presented to 

produce a quicker clock allocation during the syncing 

procedure. 

III. MESOCHRONOUS CLOCK 

VIRTUALIZATION IN MPSOC (VR-

MPSOC)  

A virtual delay calculation unit is provided in the 

suggested method to the virtualisation of the MPSoC 

operation. This suggested technique changes the 

current MPSoC design for each core unit with a 

library unit; for each operating instruction of the 

processor unit, the library Unit is specified by a pre-

computed delay parameter. The instructions for a 

multi-core processing unit are referenced in this 

design approach where instructions are classified as 

1, 2 or 3 byte instructions. Every operation is 

conducted here as a direct addressing operation or a 

direct addressing operation or two indirect addressing 

operations. The clock delay is calculated for each of 

these types. The time calculation is calculated as an 

aggregate delay of the physical delay due to the 

manufacture of the device and the total delay in the 

set-up and the time for data is maintained. Each delay 

is calculated for each type of instruction and set as a 

library for each core unit. This delay input procedure 

is conducted throughout the design process as the 

processing instructions of a design processor are 

constant and the delay parameter is constant for each 

instruction. Each instruction is processed to complete 

delay computing and a matching delay in the library 

function is set for each instruction. Each library is 

stored in the core unit as a synchronisation table. This 

library unit is mapped with the processing 

instructions during operational stage and the delay is 

mapped to the arbiter unit. The arbiter is specified at 

the MPSoCNoC interface that performs the bus 

arbitration procedure. Each bus line is allocated on 

the basis of the core bus request from the core unit. In 

this method of allocation, the delay of the mapped 

instructions is applied for each allocation. This 

minimises the extra calculation delay and reduces 

latency in MPSoC operation. The suggested 

approach's latency parameter is the accumulated 

delay owing to clock allocation and calculation delay. 

In each execution of the instructions, the data or 

instruction takes an instruction/data buffering time to 

synchronise the process. Each unit is processed for a 

delay value according to the instruction type. As the 

added latency corresponds to the entire delay from 

allocation to calculation, and the time delay for the 

clock to sync and the delay is high. In addition to the 

processing delay, the bus allocation and the data 

exchange also observes a route delay. Where 

attempts are made to decrease the road delay by 

appropriate architectural floor layout, the delay is 

substantial during operation. The main element of 

switching and calculation is eliminated by the library 

unit to overcome this delay. This is a virtual 

implementation of a time stamp unit that returns the 

appropriate delay value during operation. This leads 

to virtual MPSoC design being developed called 'Vr-

MPSoC' units. The technique proposed is described 

in the following algorithm. 

Algorithm (Clock switch virtualization)  

Process Initialize:  
Step 1: define the cluster of CPU 

Step 2: allocate the arbiter for data and instruction  

Step 3: allocate the operation instruction for each 

CPU  

Process read:  
Step 1: generate a read offset signal to library 

latency  

Step 2: recover the time stamp for each instruction  

Step 3: record the delay to offset library  

Processes execute:  
Step 1: Read instruction  

Step 2: Decode instruction type  

Step 3: Read offset value  

Step 4: Allocate to data and instruction register  

Step 5: Read data  

Step 6: Execute instruction  

Step 7: Write back  

End  

The operational block diagram for the proposed 

approach is presented in Fig. 1 below. 



48 
 

 

Fig. 1: System Architecture for the proposed 

MPSoC interface 

The processor unit is handled in two operational 

phases, in which the update phase Phase-1 is 

performed when each of the decoded commands is 

mapped to the library unit. The arbiter is assigned a 

delay stamp for each type of instruction decoded, 

which internally assigns the delay value dependent on 

the clock cycle during execution. The procedure of 

computation and allocation is removed and the 

arbitration process is carried out on the basis of the 

scalar time delay value. This leads to a low system 

latency. 

IV. SIMULATION RESULTS  

This suggested work is validated in three stages of 

simulation, whereby the operational functionality of 

the proposed method is assessed for the scheduling of 

the proposed task. The allocation and operating 

overhead delay is calculated. The suggested 

technique is validated at the second level of 

implementation using the Xilinx ISE synthesiser for 

the FPGA device. This result shows the processing 

speed, area, latency and system performance. The 

final portion of the simulation result is analysed for 

the various instructional densities. 

A) Operational verification functional 

For time monitoring, the HDL description of the 

simulated particular job was generated in the Aldec 

tool. The created design is focused at Xilinx FPGA 

devices in order to implement the proposed method. 

Measurements are assessed for power, latency, 

throughput, and area. The results are shown below. 

Fig. 2 shows the set of instructions utilised to validate 

the proposed work. This technique works differently 

by using the instruction buffer set in the core CPU as 

the instruction cache. The processing instructions for 

each core unit are used to buffer the data collected 

from the main memory. 

 

Fig. 2: Operational instruction used for testing 

In the test process, each of the instruction is passed to 

the arbiter unit, where the instructions are mapped 

with the delay constraint as illustrated in Fig. 3. 

 

Fig. 3: Mapped instruction of delay metric at 

arbiter unit 

The mapped clock pulse results in the creation of a 

new data, which is decoded in the arbiter as a delay 

instruction. Each register is assigned with the input 

and output clock delay value in the processing unit 

during execution. The mapped clock pulse results in a 

new data generated for each instruction and decoded 

as a delay instruction placed on the arbiter. Each 

processor unit is immediately allocated during 

processing when conducting an execution reading. 

The delay mapping and allocation procedure is 

shown in Fig. 4. 

 

Fig. 4: Delay instruction allocation at arbiter unit 



49 
 

In the process of instruction execution for a 4 set of 

instruction, the latency for the proposed approach is 

observed to be 49 compared to 54 for VA-MPSoC 

design. The observation is illustrated in Fig. 5 below. 

 

Fig. 5: Latency measurement for the developed 

system  

B) Implementation result  

The implementation of the developed approach is 

targeted to Xilinx FPGA device for a Spartan family. 

The implementation report obtained is presented in 

Fig. 6. 

 

Fig.6: Report of Xilinx FPGA implementation for 

the developed system  

A Power Analysis of the implemented design is 

computed using X-power analyzer of Xilinx tool. A 

power rating of 181mW of power rating is obtained. 

 

Fig. 7: X-power report for developed system 

The timing report for the developed system illustrated 

a maximum operating frequency of 129.98MHz with 

a time period of 7.6ns. The device has a setup delay 

of 2.9ns and a hold delay of 3.6ns. The placement of 

the logical design with routing and area coverage is 

observed using Xilinx-route and place operation. The 

Interconnection 

 

Fig. 8: Logical interconnect of CLB in targeted 

FPGA device  

The logical placement of CLB unit is shown in Fig. 

9. 

 

 



50 
 

Fig. 9: Logical Placement of CLB unit  
The pin layout for the targeted design is shown in 

Fig. 10. This implementation has dedicated lines of 

12 IO lines with Vcc and ground pins as seen in Fig. 

10.  

The blue encircled are the allocated line here, 

 

 

Fig. 10: Pin layout of the implemented design for 

the targeted FPGA 

 

C) Analysis of developed approach  
In the validation of operation performance power 

measure is critical. The power consumed in a 

processor unit is defined by,  

(1)  

Where is the capacitance, is the voltage, and is the 

operating frequency for a set of instruction executed. 

Here the power is defined as a function of device 

parameter and the operating frequency of the 

processing unit. Here, more the operation frequency 

is more the unit is enabling giving more dissipation 

of power. However, for reduced computations the 

operational iteration are reduced which leads to less 

number of operational cycles and hence reducing the 

power consumption. The analysis of the power 

utilization is presented in table 1 below. 

Table 1: Observation for power utilization 

 

The power consumption is proportionately high for 

wide selection of instructional systems, however 

owing to low time computing cycles, the 

consumption is comparably smaller in the Vr-MPSoC 

architecture. 

Latency is the number of calculation cycles used in a 

procedure. Table 2 below summarises the observed 

delay of the technique proposed. 

Table 2: Latency observation for the developed 

approach 

 

The comparison of latency for different instruction 

density is shown in Fig. 12 



51 
 

 

The system performance for a device design is 

validated by the efficiency of number of processing 

block per cycle which is termed as throughput. The 

throughput of a digital system is defined by, 

 

Where , and LAT are the maximum operating 

frequency, block size and latency measured. 

Table 3: Throughput observation 

 

 

V. CONCLUSION  

This study introduced a novel technique to the 

mapping of chip multiprocessor system architecture 

(MPSoC). The distributed computing offers the 

benefit of quicker operation, but its functional 

performance is constrained by delays in resource 

allocation. In order to achieve optimum operating 

performance in spreading processing units, a novel 

clock time allocation virtualization with library 

mapping is introduced in the MPSoC architecture. 

The above technique significantly improves latency 

reduction and hence decreases electricity usage. This 

performance shows an increase in the system 

processing performance. 

REFERENCES  
1. L.Benini and G.DeMicheli, “Networks on chip: a new SoC 

paradigm”. IEEE Computer, 35(1):70-78, January 2002.  

2. T.Ono, M.Greenstreet, “A Modular Synchronizing FIFO for 

NOCs”, Proceedings of International Symposium on Networks-

on-Chip (NOCS), 2009  

3. T.Chelcea, S.M.Nowick, “Robust Interfaces for Mixed-Timing 

Systems”, IEEE Transactions on Very Large Scale Integration  

Systems, 12(8): 857-873, 2004.  

4. D.Ludovici, A.Strano, G.N.Gaydadjiev, L.Benini, D.Bertozzi, 

“Design Space Exploration of a Mesochronous Link for Cost-

Effective and Flexible GALS NOCs”, Proceedings of Design, 

Automation and Test in Europe (DATE’10), pp. 679–684, 

Dresden, Germany, 2010.  

5. C.Cummings, P.Alfke, “Simulation and Synthesis Techniques 

for Asynchronous FIFO Design with Asynchronous Pointer 

Comparison”, SNUG-2002, San Jos`e, CA, 2002.  

6. A.Edmanand, C.Svensson, “Timing Closure through Globally 

Synchronous, Timing Portioned Design Methodology”, 

Proceedings of Design and Automation Conference (DAC), 

pp.71–74, 2004.  

7. P.Caput, C.Svensson, “An On-Chip Delay- and Skew-

Insensitive Multicycle Communication Scheme”, IEEE Solid-

State Circuits Conference (ISSCC), pp.1765–1774, 2006.  

8. I.M.Panades, A.Greiner, “Bi-Synchronous FIFO for 

Synchronous Circuit Communication Well Suited for Network-

on-Chip in GALS Architectures”, Proceedings of International 

Symposium on Networks-on-Chip (NOCS), pp.83–94, 2007.  

9. D.Ludovici, A.Strano, D.Bertozzi “Architecture Design 

Principles for the Integration of Synchronization Interfaces into 

Network-on-Chip Switches”, Proceedings of 2nd. International 

Workshop on Network on Chip Architecture (NoCArc), pp.31–

36, New York City, NY, 2009.  

10. D.Ludovici, D.Bertozzi, L.Benini and G.N.Gaydadjiev, 

”Capturing Topology-Level Implications of Link Synthesis 

Techniques for Nanoscale Networks-on-Chip”, Proceedings of 

the 19th ACM/IEEE Great Lakes Symposium on VLSI 

(GLSVLSI), pp.125-128, 2009.  

11. I.Loi, F.Angiolini, L.Benini, “Developing Mesochronous 

Synchronizers to Enable 3D NoCs”, Proceedings of 

International Conference on VLSI Design, 2007.  

12. D.Ludovici, A.Strano, D.Bertozzi, L.Benini, G.N.Gaydadjiev, 

“Comparing Tightly and Loosely Coupled Mesochronous 

Synchronizers in a NoC Switch Architecture”, Proceedings of the 

3rd ACM/IEEE International Symposium on Networks-on-Chip, 

pp.244-249, 2009.  

13. S.Stergiou, F.Angiolini, S.Carta, L.Raffo, D.Bertozzi, 

G.DeMicheli, “XPipes Lite: a Synthesis Oriented Design Library 

for Networks on Chips”, Proceedings of Design, Automation and 

Test in Europe (DATE’05), pp.1188–1193, 2005.  

14. F.Angiolini, L.Benini, P.Meloni, L.Raffo, S.Carta, 

“Contrasting a NoC and a Traditional Interconnect Fabric with 

Layout Awareness”, Proceedings of Design, Automation and 

Test in Europe (DATE’06), March 2006.  

15. “Specification of optimized GALS interfaces and application 

scenarios”, GALAXY Project deliverable D3, online at 

http://www.galaxyproject. org/publ deliv.html  

16. J.Ebergen, “Squaring the FIFO in GasP”, Proceedings of 

International Symposium on Asynchronous Circuits and 

Systems, pp.194–205, 2001.  

17. C.E.Molnar, I.W.Jones, W.S.Coates, J.K.Lexau, “A FIFO 

ring performance experiment”, Proceedings of International 



52 
 

Symposium on Asynchronous Circuits and Systems, pp.279–289, 

1997.  

18. R.Apperson, Z.Yu, M.Meeuwsen, T.Mohsenin, B.Baas, “A 

scalable dual-clock FIFO for data transfers between arbitrary 

and haltable clock domains”, IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, 15(10), pp.1125–1134, 2007  

19. Johannes Ax, Gregor Sievers, Julian Daberkow, Martin 

Flasskamp, Marten Vohrmann, Thorsten Jungeblut, Wayne 

Kelly, Mario Porrmann and Ulrich Ruckert, “CoreVA-MPSoC: 

A Many-core Architecture with Tightly Coupled Shared and 

Local Data Memories”, IEEE Transactions on Parallel and 

Distributed Systems, Post-Print , December 2017.  

 

Author Details: 

 

SAMBA ANUSHA is pursuing Mtech 

in Holy Mary Institute of Technology 

& Science, Keesara, Bogaram, 

Ghatkesar Rd, Kondapur, Telangana 

501301. Her interest areas VLSI. 

 

  

 


