
138

139

 ISSN2321-2152 www.ijmece

 Vol 8, Issuse.3 July 2020

A Malware Detection Method Based on Machine Learning for Health Sensor

Data.

E.Muralidhar Reddy1,Erugu Krishna2,G.Shankar Rao3,Dr.K.Venkata Ramana4,

Abstract—Small modifications in the malware code are not detected by traditional signature-based techniques.

Currently, the vast majority of malware programmes are based on other programmes that have already been

developed. In this way, they share certain patterns yet vary in their signatures. It is crucial to identify the malware

pattern rather than only detect slight changes in health sensor data in order to get reliable results. As a result, we

have proposed a quick detection solution that uses machine learning-based algorithms to identify patterns in

malware code. Data from health sensors will be analysed using XGBoost, LightGBM, and Random Forests in

particular. Sequences of bytes/tokens or a single byte/token may be supplied into them (e.g. 1-, 2-, 3-, or 4- grams).

It's been possible to amass terabytes of software that has been labelled, including both good and bad applications. In

order to train and test the dataset, which comprises of health sensor data, we must first pick and get the features, then

adjust the three models and assess the features and models. As soon as one model detects an intruding malware

programme, its pattern will be broadcast to the other models, thus thwarting the malware program's incursion.

Keywords—Detection of malware, machine learning, health sensor data, and a recurring trend.

INTRODUCTION

All sorts of sensors are being used to gather health

sensor data in the Internet of Things era. Health

sensor data is inevitably contaminated with malicious

code, which is interpreted as an incursion in the

target host computer by a hacker. Cybercriminals use

a wide variety of malicious code types to infect

computers and other electronic devices. Computer

systems and networks may be damaged or even

destroyed by malware assaults that steal important

data. In today's world, it's one of the most serious

dangers to computer security there is. Typically,

malware analysis is done using one of two methods

[4-7]. Static analysis is often performed by displaying

the various resources of a binary file without actually

implementing it and evaluating each component of

the binary file.

Professor1,2,3,4, Assistant Professor1,2,3,4, ,Associate Professor1,2,3,4,

Department of CSE Engineering,

Pallavi Engineering College,

Mail ID:krishna81.reddy@gmail.com, Mail ID:krishna.cseit@gmail.com,
Kuntloor(V),Hayathnagar(M),Hyderabad,R.R.Dist.-501505.

140

 (2) A disassembler may also be used to disassemble

(or rewrite) binary files (such as IDA). Often,

machine code can be translated into assembly code,

and assembly code can be understood by people. It is

possible for anti-malware researchers to decipher a

program's assembly instructions and create a mental

picture of what it should do. In order to evade this

sort of examination, some current malware use

confusing approaches, such as inserting grammatical

flaws in the code. The disassembler may have

difficulty deciphering these mistakes, but the code

still runs correctly when they are executed. To do a

dynamic analysis, the malware must be seen in action

on the host system. For example, modern malware

may utilise deceptive approaches such as testing

virtual environments or active debuggers to avoid

dynamic analysis, delaying the execution of harmful

code, or necessitating user interaction [8–10]. We

concentrate mostly on static code analysis in this

research. Feature matching and broad-spectrum

signature scanning are the most common methods of

early static code analysis. Broad-spectrum scanning

scans the feature code and divides the portions that

need to be compared and those that do not need to be

compared using masked bytes for feature matching.

The hysteresis issue is critical since both approaches

need malware samples and characteristics to be

extracted before they can be identified. As malware

technology advances, it starts to deform throughout

the transmission process to prevent detection and

elimination, and the number of malware variations

skyrockets. As a malware signature, it is difficult to

extract a piece of code from the many variations due

to the frequent changes in their appearance.

II. REALTED WORK

Using current expertise and knowledge to analyse

unfamiliar binary code and categorise malware using

machine learning-based approaches seems logical in

this circumstance. Machine learning-based

algorithms and their applications in malware

categorization are examined in this work, according

to the instructions [11-14]. Classifying malware and

genuine software samples is the core of malware

detection and classification. As a result, machine

learning algorithms are at the heart of the host

malware detection technique described in this paper:

Gather a sufficient number of samples of malware

code and samples of genuine software. Extract the

characteristics from the sample using efficient data

processing. Identify the most important

characteristics for categorization. Use machine

learning methods to build a categorization model

from the training data. A trained classification model

is used to identify unknown samples. The end aim of

this practical job is to determine the most effective

features and models. Research questions and

concepts are introduced in this chapter. After that,

we'll explain: How we got our data, what traits are

common, and how we're going to deal with them in

this study. After conducting the trials, we apply a

detection model based on machine learning

approaches to summarise and evaluate the data.

III. MALWARE CODE ANALYSIS

A. Malware Sample Collection
In order to do code analysis, malware

samples must be collected in a proper

manner. Classification models, when used

with machine learning algorithms for

detection, may only perform more accurate

detection tasks after sufficient training with

sample data [38, 40]. Malware samples may

be obtained in a variety of methods. Most

anti-virus software providers use user-side

sampling as their primary strategy. Malware

samples are submitted by end users of anti-

virus software. The security suppliers

typically opt not to freely publish their data,

which makes it impossible to access the data

directly from this technique. Virus Bulletin,

Open Malware, VX Heavens, etc. are all

examples of open network databases. The

open online sample systems, on the other

hand, are restricted at this moment in

comparison to the rate of malicious code

update, and the sites have issues such as

being exposed to assaults. As a result, the

need for a malware-sharing mechanism has

become more apparent. 3) Additional

technological options include: Malware

samples may be collected by utilising a

capture tool such as a honeypot (such as the

Nepenthes honeypot), which is intended to

encourage attackers to attack. Other methods

of obtaining Trojans and Internet backdoors

include using spam traps or security

discussion forums. There is a limit to how

large a sample size may be obtained via the

use of these methods. A business called

SecureAge provides the raw data for this

research, so we don't have to do any further

processing. The static properties of the virus

must typically be extracted via code

disassembly before any feature extraction

can begin. Tools like IDAPro and Hopper,

as well as OllyDbg, are common. With IDA

Pro, you may build malware assembly code

and do additional tasks including identifying

functional blocks, retrieving input

141

functionality and deriving descriptions of

functional flow charts. This paper also

includes references to these.

B. Feature Selection
A feature may fall into one of three

categories: Sample features are most often

extracted using feature types depending on

sequence. The N-gram is the most

prominent example of this technology.

Words that appear more than once in a

feature sequence are assumed to be linked to

those that appear less than once. The N-

gram model uses sliding windows to

partition a phrase set of length L into L+1

feature sequences. PUSH SUB SAL is one

of five distinct 3-gram sequences that may

be formed from the word set "PUSH, SUB,

SAL, AND," "SAL AND DIV," "AND DIV

LDS," and "DIV LDS POP" (L=7 at this

time). Three words make up each sequence.

Lemmas were selected by Abou-Assaleh

[15] using the K-next-neighbor classification

approach, a feature extraction framework

based on byte sequences. The use of

opcodes as a basis for word selection is still

another option. New n-gram feature

extraction methods were suggested by

Henchiri [16]. Using opcode feature

extraction, we can better identify malware.

Malware detection accuracy was as high as

99 percent when Moskovitch [17] tested

more than 3104 files against five opcode-

based classifiers. With noisy and inadequate

data, to improve classification accuracy.

Noise-aware signal combination (NSC) was

introduced by Abualsaud [39]. NSC

combines k-NN, ANN, SVM, and Bayes

models utilising feature extraction

depending on their individual performance

while maintaining appropriate complexity.

Another feature type may be gleaned from

the programme code by examining the

output string, since the output string reveals

a lot about the program's goals. Since the

code contains fewer strings, the extracted

feature set has fewer dimensions, and less

effective control may be obtained with

regard to computational costs, than with

sequence-based feature sets. As a feature

type, a program's call to an application

programming interface (API) may also be

referred to. It was found that Ding [18]

extracted characteristics based on API calls

by comparing malicious code and genuine

code application programming interfaces

and then analysing API calls. Five types of

characteristics are selected for this paper:

One of the most useful features is the byte

count. Binary/hexadecimal coding is used to

represent all files on a computer. Counting

the quantity of numbers in raw exe files is a

natural notion. exe files may be retrieved

from the PE header using the following

procedure. A label 0/1 is at the start of this

string array, which has values ranging from

0 to 255. All strings are counted for the

number of 0-255s, and then libsvm files are

generated using those numbers.

In machine learning, libsvm files are a typical data

format. x:y indicates that the value of the dimension

x is the same as the label x:y. There are two labels in

the libsvm, one for malware and one for safe

software: 0 for malware and 1 for safe software.

The assembly instructions will reveal what the exe

file intends to perform, based on the programmer's

knowledge and expertise. As a result, each file's

assembly code is extracted. In certain cases, it's

critical to look at the instructions in their proper

context. As a result, we count the number of 1-gram

(like test), 2-gram (like test+jnz), 3-gram (like

test+jnz+push), and 4-gram command strings and

utilise them as features (also for the libsvm format).

Features ranging from 1-4 grammes from DAF

(Device Assembly Facility). The parameters of the

instructions, such as 'test esi, esi,' may be included in

the command if the instruction feature is working

properly. Memory, register, constant and other types

of parameters are divided into five categories and the

1-gram, 2-grams, 3-grams and 4-grams are counted

from all instructions with two parameters. The DAF

1-4-gram feature looks like this. Section feature. 4) A

disassembled file also includes the section. When a

file is opened, the lengths of certain frequent

segments are counted and this is the value of the

relevant dimension (the segment's name). Functions

provided by DLL It is necessary to invoke a system

dll function in order to start executable files. There is

a good chance that malware will call certain unique

dll functions. The additional instruction in the data

section of the disassembled file identifies the dll

function. Only one dll function will ever be called

142

from each file, hence the dll function's associated

dimension value is 1 (call) and 0. (not call). In order

to get malware samples, three typical procedures and

three common feature categories are presented. In

addition, we'll go through where we got the data for

this experiment and which characteristics we'll be

using.

Model Selection

A harmful code classifier may be generated using the

data gathered from the static and dynamic analysis of

the malicious code as inputs to the machine learning

algorithm training. To design a classifier, you may

use the Naive Bayes. The maximum likelihood

estimate approach is often used in Naive Bayesian

model parameter estimation. Another way of saying

this is that the naive bayesian model may function

independently of any Bayesian models[39]. Among

machine learning algorithms, KNN is one of the most

user-friendly. Using "enhanced learning," in which

fresh samples of the training set are taught

incrementally without retraining the model, is one of

the KNN's main advantages. For binary

classification, the SVM algorithm seeks a linear

hyperplane. As data sets get larger, the SVM and

KNN algorithms become computationally inefficient

[39]. "Bagging" models like Random Forests are

combined prediction models with numerous decision

trees. If we use a decision tree to train our model, we

will end up with a Random Forest. It is capable of

producing high-accuracy classifiers for a broad range

of data. It's capable of dealing with a huge number of

different inputs. It may evaluate the significance of

factors in selecting categories.. Furthermore, the rate

at which one picks up new skills is lightning quick.

Traditional learning models include naive Bayes,

SVM, KNN, and Random Forest. Some novel

machine learning models have also been developed in

recent years. XGBoost is an open-source package for

C++, Java, Python, R, and Julia that offers a gradient

boosting framework. With XGBoost, the algorithm's

accuracy may be improved automatically by taking

use of the CPU's multithreading capabilities. Many of

the winning teams in recent machine learning

contests used it as their preferred algorithm, resulting

in a recent surge in its popularity and interest.

(Wikipedia) This is the simplest portion of XGBoost,

the CART (regression tree). For each piece of input

data, it creates a classification tree based on its

properties and previous predictions. The gini index is

used to compute the gain and pick the tree's features

during development. gini index formula (1) and gini

index gain formula (2) are both provided for your

perusal (2). [1] [1] [1] [1] Gini In this case, the word

"p" stands for "d" and "p" stands for "a." (1) Type k's

probability in dataset D is represented by Pk, and a

big K indicates that there are a lot of kinds in D.

There are two ways to look at this: () D D

Assumption of Risk Gini D DD D1 and D2 represent

datasets with feature A and datasets without feature

A, respectively, and Gini(D1) specifies the gini index

of datasets with feature A in the dataset. Second-

order Taylor expansions are used to approximate the

objective function, which reduces the temporal

complexity in XGBoost [19]. Additionally, it

specifies the tree's complexity and applies it to the

target function, allowing the tree to expand

dynamically by splitting and evaluating segments at

the split nodes itself. In comparison to other boosting

algorithms, these are some of the advantages that

XGBoost provides. In addition to LightGBM [20],

there are various boosting models. For ranking,

classification, and many other machine learning

applications based on decision tree algorithms, it is a

high-performance gradient framework. It is part of

Microsoft's DMTK initiative. The following are

XGBoost's drawbacks: In order to do one iteration,

the training data must be traversed several times. (2)

A split-gain computation is required for each split

node, which also takes a long time. This article uses

XGBoost, LightGBM, and Random Forest models.

As a result of the poor performance of the SVM

(Support vector machine), we chose to stick with

these three models instead..

CONCLUSION

The use of machine learning methods in the

identification of malicious code in health sensor data

has been increasingly appreciated by the academic

community and various security companies [27-30,

38, 40]. An study of static code using several

machine learning methods and code properties is

presented in this work, which draws on the theory of

machine learning to combine the benefits of many

models [31-33, 36-37]. [34] This study may serve as

a reference for the design and implementation of

machine-learning malware detection technologies.

But it is still in the early stages of development in this

sector. There are still a slew of responsibilities and

obstacles to overcome, which are listed below. It's

difficult to train a machine learning algorithm when

there aren't tens of thousands of data points [35] to

work with. There is no assurance that the collecting

of these essential data will be completed in a timely

manner [36, 37]. For many features, we merely know

that they are successful but have no idea why. This is

the internal explanation. In the next years, this

problem will be the most difficult one to solve.

143

REFERENCES

[1] L. Wu, X. Du, W. Wang, B. Lin, ―An Out-of-

band Authentication Scheme for Internet of Things

Using Blockchain Technology,‖ in Proc. of IEEE

ICNC 2018, Maui, Hawaii, USA, March 2018.

[2] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and

J. Hu, ―Cloud-Based Approximate Constrained

Shortest Distance Queries over Encrypted Graphs

with Privacy Protection‖, IEEE Transactions on

Information Forensics & Security, Volume: 13, Issue:

4, Page(s): 940 – 953, April 2018, DOI:

10.1109/TIFS.2017.2774451.

[3] P. Dong, X. Du, H. Zhang, and T. Xu, ―A

Detection Method for a Novel DDoS Attack against

SDN Controllers by Vast New Low-Traffic Flows,‖

in Proc. of the IEEE ICC 2016, Kuala Lumpur,

Malaysia, 2016.

[4] Z. Tian, Y. Cui, L. An, S. Su, X. Yin, L. Yin and

X. Cui. A Real-Time Correlation of Host-Level

Events in Cyber Range Service for Smart Campus.

IEEE Access. vol. 6, pp. 35355-35364, 2018. DOI:

10.1109/ACCESS.2018.2846590.

[5] Q. Tan, Y. Gao, J. Shi, X. Wang, B. Fang, and Z.

Tian. Towards a Comprehensive Insight into the

Eclipse Attacks of Tor Hidden Services. IEEE

Internet of Things Journal. 2018. DOI:

10.1109/JIOT.2018.2846624.

[6] Z. Wang, C. Liu, J. Qiu, Z. Tian, C., Y. Dong, S.

Su Automatically Traceback RDP-based Targeted

Ransomware Attacks. Wireless Communications and

Mobile Computing. 2018.

https://doi.org/10.1155/2018/7943586.

[7] L. Xiao, Y. Li, X. Huang, X. Du, ―Cloud-based

Malware Detection Game for Mobile Devices with

Offloading‖, IEEE Transactions on Mobile

Computing, Volume: 16, Issue: 10, Pages: 2742 –

2750, Oct. 2017. DOI: 10.1109/TMC.2017.2687918.

[8] https://en.wikipedia.org/wiki/Malware_analysis

[9] Z. Tian, W. Shi, Y. Wang, C. Zhu, X. Du, et al.,

―Real-Time Lateral Movement Detection Based on

Evidence Reasoning Network for Edge Computing

Environment‖, IEEE Transactions on Industrial

Informatics, Volume: 15, Issue: 7, Page(s): 4285 –

4294, March 2019.

[10]L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, M.

Guizani, ―Security in mobile edge caching with

reinforcement learning‖, IEEE Wireless

Communications Volume: 25, Issue: 3, pp. 116-122,

June 2018, DOI: 10.1109/MWC.2018.1700291.

[11]S. Su, Y. Sun, X. Gao, J. Qiu* and Z. Tian*. A

Correlation-change based Feature Selection Method

for IoT Equipment Anomaly Detection. Applied

Sciences.

[12]X. Yu, Z. Tian, J. Qiu, F. Jiang. A Data Leakage

Prevention Method Based on the Reduction of

Confidential and Context Terms for Smart Mobile

Devices. Wireless Communications and Mobile

Computing, https://doi.org/10.1155/2018/5823439.

[13]Y. Sun, M. Li, S. Su, Z. Tian, W. Shi, M. Han.

Secure Data Sharing Framework via Hierarchical

Greedy Embedding in Darknets. ACM/Springer

Mobile Networks and Applications.

[14]Y. Wang, Z. Tian, H. Zhang, S. Su and W. Shi. A

Privacy Preserving Scheme for Nearest Neighbor

Query. Sensors. 2018; 18(8):2440.

https://doi.org/10.3390/s18082440.

[15]ABOU-ASSALEH T , CERCONE N , KESELJ

V ,et al. N-gram-based detection of new malicious

code[C] The 28th Annual Int. Computer Software

and Applications Conference (COMPSAC). 2004:

41-42.

[16]Henchiri O, Japkowicz N. A feature selection and

evaluation scheme for computer virus detection[C]

Data Mining, 2006. ICDM'06. Sixth International

Conference on. Hong Kong, Chian IEEE, 2006: 891-

895.

[17]Moskovitch R, Feher C, Tzachar N, et al.

Unknown malcode detection using opcode

https://doi.org/10.1155/2018/7943586
https://en.wikipedia.org/wiki/Malware_analysis
https://doi.org/10.1155/2018/5823439
https://doi.org/10.3390/s18082440

144

representation[C]//European conference on

intelligence and security informatics. Springer,

Berlin, Heidelberg, 2008: 204-215.

[18]Y. Ding , X. Yuan , K. Tang, et al. A fast

malware detection algo-rithm based on objective-

oriented association mining[J]. Computers ＆

Security, 2013,39: 315-324.

[19]T. Chen, C. Guestrin. XGBoost: A Scalable Tree

Boosting System[C] KDD '16 Proceedings of the

22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining Pages 785-

794.

[20]LightGBM: A Highly Efficient Gradient

Boosting Decision Tree[C] Advances in Neural

Information Processing Systems 30 (NIPS 2017)

[21]Park N H, Lee W S. Grid-based subspace

clustering over data streams [C] //Proc of the ACM

Conf on Information and Knowledge Management.

New York: ACM, 2007: 801-810

