

 ISSN2321-2152www.ijmece .com
 Vol 6, Issue 3Aug 2018

Studying Execution Modes and Wear Leveling in Flash Memorie

G Anjaneyulu, Syed YousufUddin, Md Ismail

Abstract:
The impact of wear levelling on a Flash storage pack- age and its access operations’ execution modes is in- vestigated. First, a
simple, static logical to phys- ical mapping functions are proposed and their im- plied wear levelling is assessed for different
address distributions, covering both unifrom access and hot spots, as well as the Flash chip utilisation within the whole package.
Second, for the access execu- tion modes, different preemptive and non-preemptive priority schemes are considered with a range
of IO arrival rates using Poisson, Erlang, Pareto and Geometric-based arrival processes. The analysis of the impact of the
execution modes on the perfor- mance of the Flash memory is undertaken using a hardware simulator. The results obtained show
clearly the good wear levelling obtained by the map- ping functions, even in presence of hot spots. In ad- dition, the effect of the
chosen execution mode on the whole storage package for each IO workload type is clearly analysed and accurately quantified.

Keywords: Flash memory, Wear levelling, Priority, Preemption, Waiting time, IO performance, Chips utilisation.

Introduction
StoragedevicesbasedonFlashmemoryarebe-comingmoreand
moreprevalentinour
dailylife.Thisrecenttechnologypresentsapanoplyofde-vices,
continually undergoing intensive evolution inresponse to
market demand for MP3 players,
mobilephones,digitalcamerasusingrawFlashdevicesandforli
ghtweightlaptopcomputers,recently
evendesktopcomputersusingFlash-
baseddevicesinothertermsSolidStateDrives(SSD).Infact,their
use is covering both consumer and enterprisestorage
products replacing Hard Drive Disks (HDD),pushing them to
archiving purpose [1].Since Flashtechnology is so widely
used, its performance shouldbe precisely quantified and its
impact on the wholesystem, in which it is embedded,
assessed relative toIO profiles and its execution
mode.However, thereare currently few studies providing
such information,which cannot just be deduced from the
behaviouralanalysis of other storage devices such as Hard
DiskDrives(HDD)andmemories(SRAM,DRAM...etc)becauseth
eiraccessoperationsarecompletelydifferent [2].Some studies
to adapt or/and proposeaccessalgorithmsforFlash-
baseddeviceswereachieved [3, 4, 5] but they still restricted

to specificapplications.

The main specific features of Flash memory mak-ing it so
different from the other storage devices arethe limited erase
cycles and the big disparity betweentheoperations access
times. The firstone associatea fixed lifetime to the Flash
chip since its manufac-turing,dependingon its typeand
density.In orderto maximise this Flash longevity an even
erase oper-ations distribution, thus a good wear levelling
shouldbeguaranteed.Inthefirstpartofthispaperandprior to
giving a quantitative characterisation of thesystemunder
study,weconsidernexttheeffectoftheaddress mapping
chosen to provide good wear level-ling and we propose a
simple static map that guar-antees data availability, and
hence maximum devicelongevity. The second feature deals
with the fact
thatservicetimesofthethreeFlashmemoryaccessoper-
ations(read/write/erase)areconstantbutpresentasignificant
disparitywhateverthechiptype.Eraseoperations,beingcostlyi
ntime,introducelongde-
laysforwaitingreadorwriteoperationsperformedafterthem.

 Department of civil
g.anjaneyulu143@gmail.com, yousufsyed@gmail.com, mdismail786@gmail.com

ISL Engineering College.
International Airport Road, Bandlaguda, Chandrayangutta Hyderabad - 500005 Telangana, India.

mailto:g.anjaneyulu143@gmail.com
mailto:yousufsyed@gmail.com
mailto:mdismail786@gmail.com

Thesedelayssignificantlychangethedeliveredperformancean
dmakeworkloadschedul-
ingcrucial.Ontheotherhand,applicationsrequiregoodorganis
ationoftheirworkloadtoconsistentlyrealisefasteraccesswitho
uthavingtocustomiseineveryspecificcontextforeachaccesspr
ofile. Whilsttrueforanystoragedevicetechnology,itisparticu-
larlyimportantforFlashbecauseitsaccesstimeislargelylocatio
n-
independent,especiallyforreads.Itiscomplicatedandprobably
unnecessarytoincludethiskindofworkloadaccessoptimisationi
ntheappli-
cationlayersortoaddasoftwarelayertoscheduletheworkload
generated byapplications according totheFlashoperation
modes.Aneasyway
tomeetgoodperformancewithoutanyschedulingofrequests,is
tochoosethemostappropriateexecutionmodefromthemostba
sicprovidedones(priority,preemption)accordingtotheinputI
Oprofile.Inthesecondpartofthispaper,weconsidertheeffectoft
heworkloadonFlashdeliveredperformanceusingdifferentIOi
n-
terarrivaltimedistributions.Wefocusonthethreemainexecuti
onmodes:withoutpriorityamong
thethreeaccessoperations(mode1),givingprioritytoreadsina
non-preemptivepolicy(mode2)andfinallygiving priority
toreadswithpreemption(mode3).Intherestofthepaper,sectio
n2givesasuccinctpresentationofFlashtechnologybackground
.Sec-
tion3isdedicatedtothewearlevellingstudy.Itdescribestheuse
dtools,presentstheproposed map-
pingfunctionsanddetailstheirvalidation.Section4isdedicatedt
otheanalysisoftheIOprofilesandtheoperationsexecutionmod
esimpactontheperfor-mance.Section4.3presents
theobtained
numericalresultsanddiscussiontheirsignificance.Finally,sec-
tion 5 summarises our main conclusions and
suggestsdirectionsforfuturework.

Background
Flashmemoryisconsideredamajor,non-volatilemass-
storagecomponentduetoitsshockresistance,

vibration tolerance, light weight and low energy con-
sumption; not to mention its high capacity.It is al-ready used
in a wide range of applications and en-
vironments,fromdailyentertainment,e.g.inMP3players,
through personal computers, for web
serversmachines[6]andcriticalsystemssuchassatellitesys-
tems[7].
There are two types of Flash memory, labelled ac-
cordingtoitsconstruction:NORandNAND.Theformerhaslower
densityandhighercostbutprovidesfast random access and
can be easily re-programmed,making it most suitable for
storing code. Another ad-vantage of NOR is its lower
susceptibility to corrup-
tionthanNAND,partlybecauseofthebadblocksthatexistinthela
tterfromthetimeofmanufac-
ture.NANDFlash,ontheotherhand,hasaverylarge storage
capacity and provides fast data accessfor large read/write
requests, making it most suitablefor storing data [8]. This is
the most widespread andthe one we consider.In fact the

density is about
8timesmoreforNAND[9],atacostthatis4to8times cheaper
than NOR. Although erases are signif-icantly faster on NOR,
they can be pre-scheduled inNAND, essentially running in a
garbage
collector.Inaddition,MLCn(MultiLevelCell)technologymul-
tiplies the storage capacity of the Flash memory
chipbyhaving n-bit information
percell.MLC2becomesaclassicaldevice,presentinmostmobilec
omponentssuch as cameras and smart-phones.The first
MLC3was developed by Hynix Semiconductor in 2008, fol-
lowed by Samsung in 2009 to produce initially mi-croSD
cards and to support more competitive highdensity
consumer electronics storage solutions in thenearfuture.
ANANDFlashmemorychipiscomposedofafixed number of
blocks, each of which is partitionedinto a fixed number of
pages.Every page consists oftwo areas:a data area for native
(user) data and
aspareareafordatastatusinformation(figure1).
Ablockistheeraseoperation’sunitofstorage,whilst a page is
the read and write operation’s unit.No‘in-
place’updatesareallowedinNANDFlash.Whendataismodified,
thenewversionmustbewrittentoanavailable page–called
thelivepage.Thepagecontainingtheoldversionisconsideredad
eadpageandisinvalidated.Astimepasses,ficient garbage
collection process, using a relativelyreduced mounting
time.Recently, comes UBIFS [17]for Unsorted Block Images
File System, designed byNokia for Flash-based devices as
Solid State
Drives(SSD).Itprovidesfastermountingtimeandgoodwear
levelling comparing to the JFFS2 random one.The second
class of file systems are designed to workunder any file
system.We can cite YAFFS (Yet An-other Flash File System)
which is the first file
systemdesignedspecificallyforNANDdevices,considering
the number of dead pages increases and the
systemreclaimsthem,inordertoperformfurtherwriteoperatio
ns, by running a garbage collection
process.However,theerase/write
unitmismatchgeneratesadditionalcopyingofremaininglivepa
gesfromablock,whenerasingit,toanotherone.Anotherlimitati
on of the NAND Flash technology is that
thenumberoferaseoperationsislimitedtoabout105

[10] forSLC (Single Level Cell) and to 104for MLC2(Multiple
Level Cell) [11].As any recycling of deadpages introduces
block erasing, an even erase-
countdistributionovertheFlashmemoryblockscannotbeachie
ved,whichresultsinthe“wear-levelling”problem.
Thishasasignificantnegativeimpactonthelongevityofthemem
orychips.Muchlikethe‘smallwriteproblem’intraditionalRAID
5systems[12].

Many studies fromtheliterature were dedicatedto Flash
memory, especially to associated file sys-tems and more
recently but less significant to pro-vide formal Flash
models, as in [13, 14].In fact,several file systems have been
developed to managedata on Flash memories. We can
separate them intotwo classes: Native Flash file systems and
non-natinefile systems which can be used with any
operatingsystems.The former class is used for raw

Flashmemories, directly integrated in embedded systemsas
JFFS (Journal Flash File System) which is a log-structured
file system for the NOR Flash device [15].Its second version
(JFFS2) [16] supports NAND de-
viceswithasequentialI/Ointerfaceandamoreef-
dataintegrityasapriority[18].IttakesintoaccounttheFlashcon
straintsandexploititsfeaturestomax-
imisetheperformanceandtherobustness.Itssec-
ondversion(YAFFS2)accommodatesanewerchipwith larger
pages. More recently, LogFS [19]
supportssnapshotsandismorespecifictolargedevicesduetoits
reducedmountingtimeanditsefficientgarbagecollectionproce
ss[20].Finally,wecite[21,22]forhybridarchitectureshandling
both FlashandRAM.AlloftheseFlashfilesystems have an
FTL(FlashTranslationLayer)composedessentiallyoftwoparts
:anallocatorprocessforthelogicaltophysicalspacemappingan
dacleanerprocessforthegarbagecol-
lection.Themappingbetweenthelogicallocationandthephysic
aloneisperformedusingmetadatainthepages’spare areas,
mountedat
theinitialisationphasebeforeanyI/Ooperationtakesplace.Gar
bagecollectionisperformedinthebackgroundtomake
freespaceforwriteoperations.

Wearlevellinganalysis
The reliability aspect is capital in storage systems. InNAND
Flash based systems, either with SLC or
MLCtechnology,thereare4typesofreliabilityproblems:
Wearoutblocks,
Informationretentionloss,
Writedistrurbphenomenon,
Readdistrurbphenomenon.
The first class of problems is the most importantone as the
chip blocks cannot be used anymore
andthecontaineddataislostfortheuser.Toavoidthis
situation, a good wear levelling should be guaranteedto
exploit the longevity of the chip at its maximum.There are
many algorithms to implement the
wearlevelling.Mainly,theycanbesplitintotwocate-
gories:staticanddynamicalgorithms.Theformerissimple
touse,itscostisnegligibleandprovidesan average wear
leveling quality for all IO profiles
asitiscompletelyindependentfromtheapplicationsIOrequests
accessing thestored data.Thesecondclass is a bit more
complex to implement as it builtsstatistics first and keeps
maintaing them over
time,thenadaptsthewriterequestsdistributionusingthese
statistics according to the blocks use
indicator.Thisiscostlyinbothcomputingtimeandstoragespace
butprovidesawearlevelling“alacarte”whichisconsideredopti
mal.
In this work, we propose a very simple static map-ping
functions and assess their impact on the deviceuse at
different levels as well as on its real longevityduration.

In this section, we present the tools used to im-
plementourmappingfunctionsandstudythere-sulted wear-
levelling algorithm in subsection 3.1, wedescribe our
proposition in subsection 3.2 and
finallywevalidateitinsubsection3.3.

Architecture’sconfigurationandtools
In this study, we consider a specific architecture
butthiscaneasily beextendedto alternate Flashcon-
figurations by using their description files, availablein
hardware libraries. In the present case, the
targetarchitecture is a package composed of 16 chips of
theK9KAG08U0MNAND-Flashof2GB[23],connectedby a
single 40MBps channel. This Flash storage pack-age is seen
as a single address space, a logical storagepool.
Wewrotea customised event driven simulatorin Cto
represent the Flash storage system and its associ-ated
modes of operation. In this section, we use onlythe mapping
module where the proposed static wearlevelling algorithm
is implemented.For all the per-formed simulations, we
considered traces of 2M reqseach.

 Proposition
Wegivebelowthestaticmappingfunctionsweproposetoimple
mentthewearleveling:

chipID=ladr%nbchip

blocID=(chipID/nbchip)%chipsizepageID=ladr/(chipsize∗
nbchip)
ladris the logical address, nb chip is the number ofFlash chips
in the package and chip size is the num-ber of pages per
Flash chip. The % denotes the mod-ulooperationand(chipID,
blocID, pageID)denotethe physical address of any page
(address unit) in thepackage. We observed the wear
levelling achieved atthree different levels: the chip, the block
and the pagelevels and we considered three parameters: the
num-berofaccessestoeveryFlashchipamongthe16in

total, the number of erases of every block among the16 × 8
ones and the number of writes for every pageamongthe16

×8×64ones.

Staticwearlevelingqualityvalida-tion
The validation of the efficiency of our mapping func-tions in
providing a good wear levelling is performedtrough3phases:
Validation of a uniform utilisation of Flash
chipswithinthepackage.
Figure 2 shows the mean chip utilisation (Cuse)and the

package utilisation (Puse) as percentagesof time, against the
arrival rate.Both are inde-pedentoftheexecution
mode.Thisisrelatedto the constant service time, whether the
serviceis delayed or not, interrupted or not.They arelinear,
increasing with the arrival rate.The Cuserepresents the mean
chip utilisation but can beconsidered as the chip utilisation
because all thechips are almost equally used, as shown in
fig-ure3,duetothegoodwearlevelling.
Validation of a good wear levelling at three hier-
archicallevels:chip,blockandpage.
Figures4,5and 6represent showthegoodwear
focusing on the emulation of the hardware functionsand the
second generates suitable IO traces for theconductedtests.
Weconsiderthearchitectureconfigurationde-scribed in 3.1,
where data is manipulated using threecommands – read,
write and erase – one at a time.The service times of these
commands were estimatedas constants by measurement on

−
∞

−

real chips as 130µs,305µs,1.5ms
respectively,includingthebus trans-fer time.Therefore, our
performance study focuseson the waiting time, unique
parameter affecting theresponsetime.
We use our event driven simulator,representingthe Flash
storage system and its associated modes ofoperation.Its
execution module processes events asthey occur – for
example the arrival of a request of agiven type or the
completion of an access – by main-tainingastandard
eventdiary.Inaddition totheFIFO execution mode, both
priority and
preemptionpoliciescanbeaccommodated.Thesimulatoren-
surescorrectimplementationoftherelativeprioritiesbetween
two classes: a high priority class composedof reads only and
a low priority class composed ofwrites and erases, which
have equal priority and areprocessed in order of arrival.In
the case of the pre-
emptiveprioritymode,awriteoreraseisinterruptedas soon as
a read enters the system. The interruptedoperation being
resumed as soon as there are againno reads outstanding, but
subject to further interrup-tion. In non-preemptive mode, a
write or erase, oncestarted,isallowed tofinish,any newread
arrivalsbeingqueued.
For the investigation of the behaviour of a
Flashstoragepackageservingvarious IOprofiles,devel-oped
IO generator handles different probability dis-
tributionsforboth logical adresses and IO interar-
rivaltimes[24].

Experimentations

Simulations were run using different synthetic IO
workloads generated using our generator. The re-
quests’ type is consistent with standardised OLTP
criteria, e.g. a fixed read:write ratio of 3:1 with ar-
rival rates ranging from 50req/s to 5000req/s, and
each address trace had a total of 500,000
requests.Various interarrival times were
considered using dif- ferent distributions: Poisson
for the ‘typical user’ case2, Erlang for the multi-
source case and Pareto for the heavy tailed case, in
an attempt to be rep- resentative of read
environments. The Erlang traces are chosen to see
the effect of reduced variance in the interarrival
times. In fact, every exponential stage in the Erlang-
n random variable is n times as fast as the Poisson
process. This gives a variance of 1/(nλ), lower than
the variance of the interarrival time in the
corresponding Poisson process with rate λ, by a
fac- tor of n. Conversely, the Pareto traces were
chosen to examine the effect of increased variance,
again keep- ing the mean interarrival time the same
at 1/λ. We used a Pareto random variable with
range [1, [and probability distribution function F
(x) = 1 x−α. Direct integration shows that this has
nth moment α/(α n), which exists if and only if α
> n; thus, 1/2 < λ < 1 for the variance to exist. To
achieve this, we first scale a range of actual arrival
rates, so as to satisfy the inequality, then generate
the Pareto- based input traces, and then scale these

back again by multiplying by the same scaling
factor.

 Resultsanddiscussion

The focus is placed on the queueing time for
each ofthe threeoperation classes (read,write
and
erase)becauseitsvariabilityhasasignificanteffect
onoverallFlashperformanceduetoitsfixedservic
etime.

Queueing time is considered the main

performancemetric for every type of operation
because of the con-
stantservice(oraccess)timeforallthreeaccesstyp
es(read/write/erase).Thusqueueingtimeisapur
eperformance metric, being entirely an
overhead
thatdependsonlyontheexecutionmode.Weinves
ti-gated the three main modes:no priority
among theoperations(mode1);non-
preemptiveprioritytoreadoperations (mode 2);
and finally preemptive read pri-ority(mode3).

Conclusion
In this paper, we have proposed simple static map- ping
functions that ensure good wear levelling for uni- formly
distributed accesses to the storage space, as well as for
accesses with hot spots, even in quite ex- treme case with
1% of the storage space accessed 100 times more frequently
than the other 99%. Such a static scheme avoids the
complex implementation and the frequent statistics
extraction and management routines called under dynamic
mappings. Consider- ing the queueing time, we confirmed
using the Pois- son distribution which provides a standard
against which to assess other workload types, that (of
course)
it increases as the arrival rate increases, more rapidly as the
system approaches instability. We observed similar
qualitative behaviour for the Erlang case but the queueing
times are smaller, due to the lower vari- ance in the
interarrival times, while the queueing times for the Pareto
distribution, where the variance is larger, increase at certain
arrival rates. We showed that the chips within the package
are equally under- used even when the arrival rate is high,
and similarly for the corresponding queueing time. This
suggests that, rather than using the package as a sole unit, it
is better to exploit the parallelism available among the Flash
chips for improved usage of the hardware com- ponents and
a reduced queueing time. This should
be achieved in the short term, taking into account the
concurrent access management to chips, the re- quests’
scheduling policies and the shared bus alloca- tion. Further,
it should be extended to the Flash bi- dimensional vector
configuration. In the longer term, we plan to extend our fluid
model for the Flash pack- age storage system [14] to handle
Flash chips operat- ing in parallel.

References
J. Gray, “Tape is dead,disk is tape, flash is disk, ram lo- cality
is king,” 2007, pres. at the CIDR Gong Show, Asilo-
mar,CA,USA.gineering Complex Computer Systems, 2007.

P. G. Harrison, N. M. Patel, and S. Zertal, “Response time
distribution of flash memory accesses,” in Valuetools, 2008.

D. Woodhouse, “Jffs : The journalling flash file system,” in
Ottawa Linux Symposium, 2001.

——, “Journaling flash file system (jffs) and journaling
flash filesystem 2 (jffs2),” website,
http://sources.redhat.com/jffs2/jffs2.

A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif, Abstract
Specification of the UBIFS File System for Flash Memory.
Springer Berlin/Heidelb erg, 2009, vol. 5850/2009, pp.
190– 206.

A. O. Limited, “Yaffs2 readme-linux v1.1,” website, 2007,
http://aleph1.co.uk.

LogFS, “Logfs home page,” website,
http://logfs.org/logfs/LogFS.

J. Engel, D. Botle, and R. Mertens, “Garbage collection in
logfs,” in Linyx conf., 2007.
Y. Park, S.-H. Lim, C. Lee, and K. H. Park, “Pffs: A scalable
flash file system for the hybrid architecture of phase-change
ram and nand flash,” in 2008 ACM Symposium onApplied
Computing, 2008, pp. 1498–14 503.

Y. Park, S. Lim, C. Lee, and K. Park, “Pffs: a scalable flash
memory file system for the hybrid architecture of phase-
change ram and nand flash,” in ACM Symposium on Applied
Computing, 2008.

Samsung, “K9kag08u0m nand-flash,” website,
http://www.samsung.com/global/system/business/ semi-
conductor/product/.

R. Jain, The Art of Computer Systems Performance Anal-
ysis:Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley Interscience, 1991.

http://sources.redhat.com/jffs2/jffs2
http://aleph1.co.uk/
http://logfs.org/logfs/LogFS
http://www.samsung.com/global/system/business/

View publication stats

https://www.researchgate.net/publication/224584686

