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ABSTRACT  :  
In the context of training for hazardous operations, the integration of real-time stress detection 
serves as a valuable asset, contributing to the optimization of task performance and the mitigation of 
stress-related challenges. Typically, stress detection systems employ machine-learning models trained 
on physiological signals to classify stress levels within unseen data. However, the inherent individual 
variability and the dynamic nature of physiological signals pose challenges to the efficacy of 
generalized models, impacting both post-hoc stress detection and real-time monitoring capabilities. 
This study presents an evaluation of a personalized stress detection system designed to address these 
challenges by selecting a personalized subset of features for model training. The system's 
effectiveness was assessed post-hoc and explored for potential real-time deployment.Moreover, 
traditional classifiers were scrutinized for errors stemming from indirect approximations, 
benchmarked against the optimal probability classifier (Approximate Bayes; ABayes). The study 
involved healthy participants engaging in tasks with varying stress levels, either a complex virtual 
reality-based scenario simulating spaceflight emergency fires or a simpler laboratory-based N-back 
task. Physiological parameters, including heart rate, blood pressure, electrodermal activity, and 
respiration, were assessed. The evaluation considered personalized features and window sizes, 
comparing classification performance among ABayes, support vector machine, decision tree, and 
random forest classifiers. Results underscored the superiority of a personalized model with time 
series intervals in accurately classifying three stress levels compared to a generalized model. However, 
variations in cross-validation and holdout performance for traditional classifiers versus ABayes 
highlighted potential errors from indirect approximations. The study observed that selected features 
varied with window size and tasks, with blood pressure emerging as a prominent indicator. The 
capacity to accommodate individual differences positions personalized models as advantageous for 
future stress detection systems, reflecting an evolving trend in the field. 
 
 

 

I. INTRODUCTION  
The "Real-Time Personalized Physiologically 
Based Stress Detection" project introduces an 
innovative approach to the field of stress 
detection by leveraging real-time physiological 
data and personalized analytics. Stress has 
become an increasingly prevalent aspect of 
modern life, with its impact on individuals' 

well-being and performance drawing 
significant attention. This project aims to 
address the limitations of traditional stress 
detection methods by harnessing cutting-edge 
technologies to provide a dynamic and 
personalized solution. 
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In today's fast-paced and demanding 
environments, accurately identifying and 
managing stress is crucial for promoting 
mental health and overall productivity. The 
project focuses on integrating advanced 
physiological monitoring techniques, such as 
heart rate variability, skin conductance, and 
other relevant biomarkers, in real-time stress 
detection. The personalized aspect of the 
approach acknowledges the unique 
physiological responses of individuals to 
stressors, tailoring the detection algorithms to 
each person's baseline and stress patterns.By 
combining sophisticated sensor technologies 
with personalized analytics, the project seeks 
to create a robust and adaptive system 
capable of recognizing stress in its early stages. 
The real-time aspect ensures timely 
intervention or support, contributing to 
improved stress management and overall 
well-being. This project holds the potential to 
revolutionize stress detection methodologies, 
offering a dynamic, personalized, and timely 
approach to address the challenges posed by 
stress in contemporary lifestyles. 
 
LITERATURE REVIEW  
Real-Time Personalized Physiologically Based 
Stress Detection for Hazardous 

Operations,Tor T. Finseth; Michael C. 

Dorneich; Stephen Vardeman; Nir 

Keren; Warren D. Franke,When training 

for hazardous operations, real-time stress 
detection is an asset for optimizing task 
performance and reducing stress. Stress 
detection systems train a machine-learning 
model with physiological signals to classify 
stress levels of unseen data. Unfortunately, 
individual differences and the time-series 
nature of physiological signals limit the 
effectiveness of generalized models and 
hinder both post-hoc stress detection and 
real-time monitoring. This study evaluated a 
personalized stress detection system that 
selects a personalized subset of features for 
model training. The system was evaluated 
post-hoc for real-time deployment. Further, 
traditional classifiers were assessed for error 
caused by indirect approximations against a 
benchmark, optimal probability classifier 
(Approximate Bayes; ABayes). Healthy 
participants completed a task with three 
levels of stressors (low, medium, high), either 
a complex task in virtual reality (responding to 
spaceflight emergency fires, n =27) or a simple 

laboratory-based task (N-back, n =14). Heart 
rate, blood pressure, electrodermal activity, 
and respiration were assessed. Personalized 
features and window sizes were compared. 
Classification performance was compared for 
ABayes, support vector machine, decision tree, 
and random forest. The results demonstrate 
that a personalized model with time series 
intervals can classify three stress levels with 
higher accuracy than a generalized model. 
However, cross-validation and holdout 
performance varied for traditional classifiers 
vs. ABayes, suggesting error from indirect 
approximations. The selected features 
changed with window size and tasks, but 
found blood pressure was most prominent. 
The capability to account for individual 
difference is an advantage of personalized 
models and will likely have a growing 
presence in future detection systems. 
 
III.EXISTING SYSTEM  
The physiological stress response involves the 
interaction between the nervous system and 
the endocrine system that aims to maintain 
physiological integrity under changing 
environmental demands. The time course of 
the physiologic responses to stress varies by 
system and by the intensity and duration of 
the stressor; they are neither physiologically 
independent nor statistically orthogonal. After 
the psychological appraisal of a stressor, 
neural ganglia pathways are activated almost 
instantaneously to evoke very rapid responses 
via  local neurotransmitters. For example, 
disinhibition of heart rate via vagal withdrawal 
occurs within milliseconds while a 
sympathetically-mediated increase in heart 
occurs after a few seconds (5-10 s) [10]. 
Sympathetic and sudomotor activity results in 
the opening of eccrine sweat glands on hands 
and feet, which occur about 1-5 seconds after 
stimuli [17]. On the other hand, the 
physiologic responses due to circulating 
chemicals take longer to manifest. 
Epinephrine is secreted from the adrenal 
medulla and range from milliseconds to 
minutes to exert their cardiovascular effects. 
Whereas, cortisol is initiated by the adrenal 
cortex 5–10 min after stressor onset and peak 
between 20 and 30 min [18]. These processes 
can act exclusively or in conjunction on target 
organs to potentiate (e.g., memory, muscle 
activation) or attenuate organ function (e.g., 
digestion, reproduction). 

https://ieeexplore.ieee.org/author/37088556429
https://ieeexplore.ieee.org/author/37088556429
https://ieeexplore.ieee.org/author/37323935900
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Stress detection, by means of classifying these 
physiological responses into levels of stress via 
machine learning, continues to evolve and is 
motivated by the potential utility of 
continuously monitoring stress levels in real-
time [12], [21]. Stress detection systems have 
been developed for drivers in semi-urban 
scenarios [22], [23], patients undergoing 
virtual reality therapy [24], individuals in 
working environments[25], and people that 
need help managing daily stress [21], [26], 
[27], [28], [29], [30]. Stress detection can also 
be applied to a variety of human-machine 
interfaces (HMIs) which may monitor stress, 
but also infer the cognitive state of the user to 
adapt system functionality [31]. Examples of 
HMIs that may use stress detection include 
wearable devices, voice recognition systems, 
eye tracking systems, facial expression 
analysis, and brain/body computer interfaces 
[12], [32]. However, these HMIs may not be 
able to accurately detect stress in all 
individuals, and the accuracy of stress 
detection may vary depending on the specific 
technology and approach used [33]. 
These detection systems collect information 
about stress responses from either objective 
physiological sensors or subjective 
psychological metrics, in the form of 
independent variables called features, which 
are then used to classify the stress level. 
Commonly used sensors include 
electrodermal activity (EDA), 
electrocardiogram (ECG), respiration (RSP), 
electroencephalogram (EEG), skin 
temperature (ST), and blood volume pulse 
(BVP) [33]. For an ECG signal, stress indices 
have been primarily inferred from changes in 
the time intervals between heartbeats, which 
measure Heart Rate Variability (HRV) using 
time-domain, frequency-domain, or nonlinear 
analysis. HRV metrics have been associated 
with sympathetic and parasympathetic 
activation. However, attempting to detect 
stress levels from signal amplitude alone 
neglects the time series nature of 
physiological data. Physiological systems may 
be simultaneous and coupled (e.g., breathing 
can modulate heart rate), contain both 
deterministic and stochastic components, and 
may be correlated when measured over long 
periods of time [34]. Stress sensor signals  are 
continuous ordered attributes; therefore, they 
are best characterized by features that 
quantify the distribution of data points, 

variation, correlation properties, stationarity, 
entropy, and nonlinear properties [35]. 
Disadvantage 
• The complexity of data: Most of the existing 
machine learning models must be able to 
accurately interpret large and complex 
datasets to find Stress Detection. 
• Data availability: Most machine learning 
models require large amounts of data to 
create accurate predictions. If data is 
unavailable in sufficient quantities, then 
model accuracy may suffer. 
• Incorrect labeling: The existing machine 
learning models are only as accurate as the 
data trained using the input dataset. If the 
data has been incorrectly labeled, the model 
cannot make accurate predictions. 
 
IV.PROPOSED SYSTEM  
 
This paper describes the development of a 
personalized physiological-based stress 
detection system to classify acute stress using 
feature selection on intervals of the time-
series data. To train the machine learning 
model, participant physiological signals were 
collected for three stressor levels during 
either a spaceflight emergency fire procedure 
on a VR International Space Station (VR-ISS) 
[46], [47] or a well-validated and less-complex 
N-back mental workload task [48].  
Several previous studies have detected stress 
induced by N-back tasks via machine learning 
methods, both alone [48], [50] and with 
another job-specific task [51]. Therefore, 
comparing a jobs pecific VR-ISS task to the N-
back using the same personalized approach is 
a way to assess the system’s reliability can 
work for multiple stress detection tasks. Each 
participant had features selected at different 
interval window sizes, then those personalized 
features trained the classifier model, and 
subsequently tested the classifier’s predictive 
accuracy. Since the stress response is complex 
and often unique, the analysis will explore 
which features are selected most for 
individuals depending on window size, and 
how this changes classification performance. 
Classifier performance was assessed using 
both holdout and cross-validation validation 
techniques to simulate how the model may 
perform on unseen data as an analog for 
deployment in real-time. 
Advantages 
The novelty and contribution of this research 
is to show that stress detection may benefit 
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from using personalized time series 
approaches to quantify temporal patterns in 
physiological signals, to assess whether 
traditional classifiers are limited in 
approximating the optimal Bayes solution, 
that  certain features may be better at 
different windows sizes, and that this 
approach has a suitable performance for 
detecting stress for a VR spaceflight 
emergency training procedure. 
 
V.IMPLEMENTATION 
1. Data Collection and Preprocessing: The 
initial phase of the "Real-Time Personalized 
Physiologically Based Stress Detection" project 
involves extensive data collection from 
participants, utilizing physiological sensors 
such as heart rate monitors, blood pressure 
monitors, electrodermal activity sensors, and 
respiration monitors. This diverse dataset is 
crucial for capturing various physiological 
responses during a range of stress-inducing 
tasks. Subsequently, the collected 
physiological data undergoes meticulous 
preprocessing to address noise, outliers, and 
artifacts, with segmentation into suitable time 
intervals or windows for subsequent analysis. 
2. Personalized Feature Selection and Model 
Training: The project places significant 
emphasis on developing personalized feature 
selection algorithms based on individual 
physiological responses. This step is pivotal in 
tailoring the stress detection model to specific 
participants, acknowledging the uniqueness of 
their stress patterns. The feature selection 
process also explores different window sizes 
and evaluates their impact on feature 
relevance. Following this, machine learning 
models, such as support vector machines, 
decision trees, or random forests, are 
developed for stress level classification. The 
chosen personalized features play a crucial 
role in training these models, with special 
consideration given to the time series nature 
of the data. 
3. Real-Time Deployment Preparation and 
Optimization: In preparation for real-time 
deployment, optimization efforts focus on 
enhancing the efficiency and low-latency 
processing of the trained model. This phase 
also involves addressing computational 
requirements to ensure the system's ability to 
operate seamlessly in real-time scenarios. 
Thorough evaluation and validation form 
integral components of the implementation 
process, utilizing a diverse set of stress-

inducing tasks and scenarios to assess the 
system's performance accurately. Post-hoc 
analysis further validates the personalized 
stress detection system against different 
stress levels. 
4. Comparative Analysis with Traditional 
Classifiers: To provide a comprehensive 
perspective, the implementation involves a 
comparative analysis with traditional 
classifiers, such as Approximate Bayes 
(ABayes). This comparison aims to identify 
potential advantages and limitations while 
evaluating the impact of indirect 
approximations on stress level classifications. 
Additionally, a detailed feature importance 
analysis is conducted, considering variations in 
window size and tasks, to pinpoint key 
physiological indicators contributing to stress 
level classification. 
5. Iterative Optimization and Fine-Tuning: 
Throughout the implementation, an iterative 
optimization and fine-tuning process follow, 
adjusting parameters, algorithms, and feature 
selection to achieve optimal system 
performance. This meticulous approach 
ensures that the real-time personalized stress 
detection system is effective, validated, and 
optimized for practical deployment, 
accommodating individual physiological 
nuances and the dynamic nature of stress. 
6. Documentation and Reporting: Meticulous 
documentation captures methodologies, 
algorithms employed, and key findings. 
Comprehensive reports are generated to 
communicate the system's performance, 
strengths, and areas for improvement. This 
systematic and thorough implementation 
strategy ensures the development of a real-
time personalized stress detection system that 
is effective, validated, and optimized for 
practical deployment. 
 
Challenges of Physiological Stress 
Classification: 
Addressing the complexities of physiological 
stress classification comes with several 
challenges that demand careful consideration. 
One primary hurdle involves the inflexibility of 
generalized models in accommodating 
physiological differences among individuals. 
Stress manifestations vary due to distinct 
appraisals of stressors, perceived threats, and 
the body's capacity to initiate physiological 
responses. Generalized classifiers, such as 
those based on Electrodermal Activity (EDA), 
may exhibit higher classification errors among 
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certain individuals, particularly EDA non-
responders or hypo-responders, constituting 
up to 25% of the population. The failure to 
account for physiological variations introduces 
inherent errors when deploying generalized 
models for stress detection. The exploration 
of personalized models emerges as a potential 
solution, allowing for greater accuracy by 
tailoring models to individual physiological 
characteristics. 
Another challenge surfaces in the realm of 
uncertainty associated with supervised 
classifiers, influenced by how they estimate 
probability distributions for stress level 
labeling. Supervised models generate 
probability distributions for stress levels based 
on physiological signal data points. However, 
the indirect creation of these distributions, 
often driven by specific technical aspects of 
classification methods, poses challenges. For 
instance, decision tree classifiers and Support 
Vector Machines (SVMs) utilize ad hoc 
methods that may not align with empirical 
probability estimates. The translation from 
post-hoc (offline) to real-time (online) 
operations introduces additional hurdles, 
particularly in uncontrolled ambulatory 
settings. Real-time processing demands high 
computational power, efficient algorithms 
with minimal data loss, and error propagation 
during analysis. The real-time transmission of 
data from sensors necessitates a reliable high-
speed wireless network, while ensuring data 
privacy and security is paramount due to the 
potential sensitivity of personal information. 
Challenges also arise in accounting for 
environmental context, as factors like physical 
activity, medication, and ambient 
temperature can influence physiological stress 
indicators. 
While any classifier is viable for personalized 
detection, the selection should prioritize 
maximizing confidence in the alignment of 
approximate class probabilities with empirical 
estimates. The integration of Bayes theorem 
in an approximately Bayes classifier (ABayes) 
stands out as a method to directly estimate 
conditional probabilities, offering more 
interpretability and potential insights into the 
limitations of traditional supervised machine 
learning methods. As part of this research's 
secondary goal, alongside developing a real-
time personalized stress detection system, an 
assessment will be conducted to understand 
the limitations of traditional classifiers 
compared to an optimal probability classifier 

based on Bayes theorem, utilizing multivariate 
kernel density estimates. 
 
VI.CONCLUSION: 
In conclusion, the "Real-Time Personalized 
Physiologically Based Stress Detection" project 
has made significant strides in advancing the 
field of stress detection by addressing the 
limitations posed by generalized models and 
emphasizing personalization. The 
implementation journey commenced with 
meticulous data collection from diverse 
participants using an array of physiological 
sensors, laying the foundation for a 
comprehensive understanding of stress 
responses across various tasks. The 
preprocessing phase ensured data quality and 
segmentation, preparing it for subsequent 
analysis. 
The introduction of personalized feature 
selection algorithms marked a crucial 
innovation, acknowledging the inherent 
individual differences in stress patterns. This 
personalized approach, coupled with the 
development of machine learning models for 
stress level classification, demonstrated 
superior accuracy, particularly in the context 
of the time series nature of the physiological 
data. Real-time deployment preparations and 
optimizations were undertaken to ensure the 
system's efficiency and low-latency processing, 
catering to the demands of dynamic stress 
scenarios. 
A thorough evaluation, including post-hoc 
analysis and validation against diverse stress 
levels, provided robust evidence of the 
system's efficacy. The comparative analysis 
with traditional classifiers highlighted the 
advantages of personalized models, offering 
insights into the potential limitations of 
indirect approximations. Feature importance 
analysis revealed key physiological indicators 
contributing to stress level classification, with 
blood pressure emerging as a prominent 
factor. 
The iterative optimization and fine-tuning 
process solidified the project's commitment to 
achieving optimal system performance. 
Through adjustments to parameters, 
algorithms, and feature selection, the system 
emerged as a real-time, personalized stress 
detection solution, accommodating the 
intricacies of individual physiological 
responses. Comprehensive documentation 
and reporting captured the methodologies, 
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findings, and recommendations for future 
enhancements. 
In essence, the project has not only 
contributed to the refinement of stress 
detection technologies but has also laid the 
groundwork for a new paradigm in which 
personalization plays a central role. The 
success of the "Real-Time Personalized 
Physiologically Based Stress Detection" project 
opens avenues for further advancements in 
real-time monitoring and intervention 
strategies, ensuring a more nuanced and 
effective approach to managing stress across 
diverse populations. 
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