

SOFTWARE DEVELOPMENT EFFORT ESTIMATION

USING EXTREME LEARNING MACHINE

*1Chenga Jhansi, *2Perati Mani Preetham, *3Kasireddy Srinivas Reddy,
*4

Abdul Razzaq,
*5

Mr. Lalam Ramu,
*6

Dr.K.Vasanth Kumar

Department of Computer Science and Engineering(IOT), Malla Reddy Engineering College,

Maisammaguda, Secunderabad, Telangana, India 500100

ABSTRACT

In the field of software engineering, the
project management approach has been
utilized to help managers maintain project
control. Estimating the amount of work
needed to finish a project with precision and
dependability is one of the key steps in
software engineering. The article's goals are
to: i) use the correlation to find the variables
that affect the estimation; and ii) apply the
Extreme Learning Machine (ELM) model
for effort estimation and compare it with
other models in the literature. Therefore, the
method with the highest accuracy for effort
prediction was studied. Based on statistical
tests and absolute mean residue (MAR)
criteria predictive precision, the models
were compared to one another. The study's
primary conclusions were that: i) there are
significant effort estimation factors; and ii)
the ELM model outperforms other models in
the literature in terms of software design
effort estimation. Thus, the application of
machine learning methods in the endeavor
the likelihood that the project's price and
time estimates will be accurate can be
increased by using an estimation procedure.

Key Words: Extreme Learning Machine,
Machine Learning, Effort Estimation,
Software Development, Project
Management

1. INTRODUCTION

For many years, forecasting models for
software development efforts have been
assessed in order to satisfy the demands of
the software sectors [1]. One of the project

management procedures that determines
how much work is needed to finish the
project is estimating the software
development effort [2]. As a result, one of
the most important factors in lowering risks
and raising project success rates is accurate
effort estimation [3].The process of
managing software projects involves
carrying out tasks using strategies to meet
the goals of the projects [4]. In order to
satisfy customer needs, both quantitative
and qualitative metrics are estimated during
the software development phase. Successful
software measurement programs, in
accordance with Saraiva [5], enable users to
comprehend data and facilitate decision-
making.

There are various methods for calculating
the effort. In order to deliver the product
within the projected time and cost, the
business must determine which technique is
best [6]. Expert Judgment is one method that
project managers employ to estimate the
amount of work required to build software
[7]. Still, because human error can occur,
this kind of approach has its limitations.
Since different project development
lifecycle models need a varied amount of
effort at each stage of the process, estimating
software effort is one of the biggest issues
faced by developers and project managers in
the field of software engineering [8].
Conventional estimates [9] are more
complicated and time-consuming since they
necessitate an effort to document operations.
Furthermore, it is not always possible to
foresee a wide range of elements and their
relationships, the experience of software

983

engineers, and the software team's project
history in the same business field [10].

Therefore, because machine learning (ML)
has the ability to learn and change its
behavior on its own, it presents an effective
alternative for Software Development Effort
Estimation (SDEE). Additionally, they
support decision-making based on data
analysis with the least amount of
professional human intervention [3]. As a
result, experts focus more of their time on
other system chores that delight customers
and less time estimating the project [1].
Furthermore, the project's initial phase
objectives are not always well stated. The
project's effective management is impacted
by the uncertainty around the essential
estimates for the project's development. A
accurate assessment of the work required
during the first stage of the software
development life cycle is necessary to
determine how much funding will be
allocated for the project's development [11].
Fadhil [12] asserts that the process of
estimating project expenses from the outset
is very important since it is required for
calculating the resources and budget needed
to complete the project.

Put another way, the primary causes of
software project failure are ambiguities
surrounding system requirements and a
lackluster assessment of the time, money,
and labor needed to complete the project.
Consequently, during the past few years,
software development efforts have been
predicted using Machine Learning (ML)
approaches in an effort to reduce uncertainty
during the software development cycle [3]
[13].Asad Ali and Carmine Gravino's
Systematic Literature Review (SLR) [1]
states that over the past ten years, a number
of machine learning techniques, including
Multilayer Perceptron (MLP), Artificial
Neural Network (ANN), Support Vector
Regression (SVR), Support Vector Machine
(SVM), Bayesian Network (BN), K-Nearest
Neighbors (kNNs), and Extreme Learning

Machine (ELM), have been used to predict
the software development effort.

In this article, the software work is estimated
using five machine learning algorithms:
Extreme Learning Machine (ELM), Support
Vector Machine (SVM), K-Nearest
Neighbors (kNNs), Multilayer Perceptron
(MLP), and Linear Regression (LR). KNN
is a non-parametric method used for
regression and classification problems,
where the population size may cause the
algorithm to execute slowly and use a lot of
memory [14]. Although SVM is a technique
that may be used to model both linear and
nonlinear problems, training it on huge
amounts of data can be time-consuming
[13]. According to [15], MLP networks are
also employed for regression and
classification. However, a number of
factors, including the number of hidden
layers, the number of neurons in each hidden
layer, the number of training periods, and
the learning rate, need to be carefully
considered.

Numerous modified ELM algorithms, such
as Integrated Multiple Kernel ELM (IMK-
ELM) [19], Multilayer Extreme Learning
Machines (ML-ELM) [18], Residual
Compensation ELM (RC-ELM) [16], and
Robust ELM (R-ELM) [17], have been
proposed recently. These previously
mentioned algorithms have been widely
used in a variety of fields, including deep
learning, the free location of devices in
environments that are disordered using
spatiotemporal information, the prediction
of the rate of gas used in the blast furnace
during the manufacture of iron, and the
treatment of tasks with Gaussian and
nonGaussian noise.
Out of the 75 primary papers that the
Systematic Literature Review (SLR) [1] has
identified, only one [20] of them use the
ELM technique for Software Development
Effort Estimation (SDEE). The SLR also
shows that feedforward networks are the
most often used kind of Artificial Neural
Networks (ANN) among other ANN kinds.

984

However, Huang [21] claims that training an
ELM can result in higher generalization
performance since it can be faster than
training a neural network by
backpropagation. In this way, the benefits of
applying the ELM technique for Software
Development Effort Estimation (SDEE)
form the basis of our study.

In order to address the two study issues
addressed in the part cited in parenthesis,
this paper additionally looked at which
attributes should be chosen to get the best
outcomes in the effort estimates and how
accurate the software effort estimate is.
RQ1: What characteristics are crucial to get
better estimates of the work required to
develop software? (Part III-C)
RQ2: Which machine learning method has
the best accuracy in effort estimation?
Section V

To address the first question, an analysis of
Pearson's correlation coefficient [22]
between the variables and their significance
was conducted. RQ1. Lastly, an analysis
was conducted to compare the model ELM's
performance with the models for software
effort estimating that have been studied in
the literature [11] [23] [24] [25] [26] [27]
[28] [29]. The Magnitude of Relative Error
(MRE), Mean Absolute Error (MAE), and
Mean Square Error (MSE) criteria were used
to obtain the answers for the second question
RQ2.

In summary, the primary contribution of this
paper is to show how to use the ELM
technique to build a machine learning model
and apply it to a dataset used to estimate
software development efforts. It produces
outcomes that are on par with or better than
those of the models studied in the literature.
In addition, to improve the field of software
engineering by saving money and time
during the project life cycle stages. The
structure of this document is as follows.
Related works are included in Section II.
The research approach is presented in
Section III. The model accuracy

measurements are presented in Section IV.
The experiment findings are shown in
Section V. There are challenges to validity
in Section VI. Section VII deals with closing
thoughts and upcoming projects.

2. RELATED WORK

The investigation carried out by [23]
conducted a comparative analysis of
different machine learning methods for
predicting software development effort,
including Linear Regression (LR), Support
Vector Machine (SVM), K-Nearest
Neighbor (KNN), and Multi-Layer
Perceptron Neural Network (MLPNN).
They utilized the determination coefficient
(R2) to evaluate these models. Meanwhile,
[24] employed a Neural Feedforward
Network to enhance the accuracy of
Software Development Effort Estimation.
Another study, [28], assessed the
effectiveness of Bayesian Networks (BNs)
in predicting software effort through
rigorous validation procedures.

Oliveira [25] employed the Genetic
Algorithm (GA) as a Machine Learning
(ML) technique, while [30] proposed a GA-
based feature model, both aimed at selecting
input resources and optimizing parameters
for ML techniques in estimating software
development efforts. Additionally, [27]
explored the use of the Bees Algorithm [31]
to select parameters for the Model Tree
(MT) depending on the dataset used.
Conversely, [26] introduced non-
algorithmic techniques for effort estimation,
noting the superior performance of
evolutionary algorithms.

Minku's work [29] involved experimental
studies on automated machine learning
ensembles, showing promising performance
across various datasets. Rahman's research
[32] implemented different machine
learning algorithms, such as Radial Based
Function Neural Network (RBFNN),
Extreme Learning Machine (ELM), and
Decision Tree (DT), for effort estimation
based on software size categories. ISBSG

985

Release 11 dataset was used for training and
testing these algorithms, revealing varying
degrees of effectiveness across different
software sizes.

In another study [33], a case-based
reasoning model hybridized with machine
learning models (ABE-LS-SVM, ABE-
ELM, ABE-ANN) was utilized, with ABE-
LS-SVM showing superior performance
across multiple datasets.

Extreme Learning Machine (ELM) and
Linear Least Squares Regression (LSR)
were applied in [20] and [11] to estimate
effort for a set of small programs. Mean
Magnitude of Relative Error (MMRE) was
used for performance analysis, with
adjustments made to ELM parameters based
on prediction errors. Other metrics such as
MAE, MSE, and RMSE were also used to
assess model performance. The Desahanais
dataset was added to confirm the
effectiveness of the applied ELM model.
Statistical tests, including normality and
hypothesis tests, were conducted to compare
the proposed model's performance with
others in the literature, along with temporal
performance tests and the presentation of
results using Box-Plot graphs, showing
significantly improved outcomes.

3. RESEARCH METHODOLOGY

This section outlines the methodology
employed to construct the ELM model for
software effort estimation. Figure 1
illustrates the proposed methodology for
precise effort prediction, comprising six
phases: Analysis (Section III-A), Select
Data Set (Section III-B), Data Preparation
(Section III-C), Modeling (Section III-D),
Experimental Evaluation (Section IV), and
Effort Forecasting (Section V).

A. ANALYSIS OF SYSTEMATIC

LITERATURE REVIEW
The development of the effort estimation
model for software development was guided
by the Systematic Literature Review (SLR)
conducted by [1]. The SLR encompassed

empirical studies published from January
1991 to December 2017, resulting in the
selection of 75 primary studies based on
specific criteria. Among the machine
learning (ML) techniques used in these
studies, Artificial Neural Network (ANN)
was the most prevalent, employed in 60% of
cases, followed by Support Vector Machine
(SVM) at 25%, and Case-Based Reasoning
(CBR) at 17%. Bayesian Network (BN), K-
Nearest Neighbors (KNNs), Decision Tree
(DT), Genetic Programming (GP),
Classification and Regression Tree (CART),
and Random Forest (RF) were less
frequently utilized.

The databases predominantly utilized in the
75 primary studies were NASA (23%),
COCOMO, and ISBSG, each accounting for
21% of references, followed by Desharnais
(19%). Kemerer, Maxwell, Albrecht,
Tukutuku, Finnish, and Miyazaki were the
least cited databases.

Primary studies from the past decade were
selected based on the systematic review.
Figure 2(a) highlights the Top 10 machine
learning techniques, with ANN and MLP
cited in 11 studies each, and SVR in 8
reviews, as the most frequently mentioned.
Figure 2(b) showcases the Top 10 datasets
used during this period, with the COCOMO
dataset mentioned in 20 studies, followed by
ISBSG and NASA in 11 and 8 reviews,
respectively.

Among various types of Artificial Neural
Networks (ANN), the ELM technique was
mentioned in only one primary study [20].
As per Huang [21], training an ELM can be
faster compared to training a neural network
via backpropagation, often resulting in
better generalization performance. Given
these advantages for Software Development
Effort Estimation (SDEE), the ELM
technique was chosen for modeling in this
study.

Datasets were scrutinized for the selection of
the appropriate technique to estimate

986

software development effort. The
Desharnais dataset [34] was chosen, as it is
relatively underexplored among effort
estimation models (Section III-B1).

The software development estimation
generated by our model will be compared

with other models in the literature.
Additionally, Carvalho's dataset referenced
in Section III-B2 will be utilized to compare
our model's performance with the proposed
models in Carvalho's article [11].

Figure 1: Proposed Methodology for Accurate Effort Prediction

Figure 2: Top 10 of the Techniques and Dataset

used in the last 10 years

B. CHOOSING THE DATASET

This subsection provides a descriptive

analysis of the datasets utilized in
constructing our model:

1) Desharnais Dataset

The Desharnais dataset [34] comprises
information from 81 software projects from
a Canadian company. Each project includes
12 attributes: Project id, Team Experience,
Manager Experience, Year End, Length,
Effort, Transaction, Entities, Point Adj,
Adjustment, Point Non-Adjust, and
Language, categorized into numeric and

categorical attributes, as outlined in Table 1.

Based on Table 1, only the numerical data
was selected, excluding the "Project"
attribute as it is not correlated with the

project effort estimate. With the selected
attributes, the subsequent step was to
identify the independent variables and the
dependent variable. Following software
development effort estimation models, the
primary variable is the effort required to
complete the project. In this case, the
dependent attribute is "Effort," with the

987

correlated independent attributes being

"TeamExp," "ManagerExp," "YearEnd,"
"Length," "Transactions," "Entities,"
"PointsNonAjust," "Envergure," and

"PointsAdj."

Table 2 presents statistical measures for all
independent and dependent attributes. The
elapsed time (Length) of the 81 measured
projects ranged from 1 to 39 months, with an
average of 11.7 months. Two attributes
representing the software size,
"PointsNonAdjust" and "PointsAdjust,"
have a minor difference, with an average of
304 for PointsNonAdjust and 289 for

PointsAdjust. The recorded level of effort
ranged from 546 to 23,940 person-hours,
with an average of 5,046.31 person-hours.

Figure 3 depicts a histogram illustrating the
distribution of data on effort, the dependent
variable, measured in person-hours. The
variables exhibit positive skewness, with the
majority of records situated towards lower
values and some outliers with very high

values.

Figure 3: Distribution of the effort value in the

Desharnais database

2) Carvalho’s Work [11]

The second set of analyzed data is sourced

from [11], encompassing 231 software
projects with 5 attributes categorized into
numeric and string types: "P" (Program
Number), "N&C" (New and Changed
Code), comprising added and modified
code, "R" (Reused Code), recognized as
physical lines of code (LOC), and "AE"
(Actual Effort), measured in minutes, are
construction of the model, effectively
addressing the research question concerning

numeric types, while "DP" (Developer

Code) is a string type.In this dataset, only the
numeric attributes were selected, and the "P"
attribute was excluded as it is unrelated to

the effort estimate. Descriptive statistics for
the selected attributes are presented in Table
3. During dataset analysis, two independent
attributes, "N&C" (New and Changed Code)
and "R" (Reused Code), were identified,
along with the target attribute, "AE" (Actual
Effort), as the dependent variable.

Figure 4 illustrates a histogram depicting the

distribution of the dependent variable (AE-
effort) in relation to effort, measured in
minutes. A normal distribution trend is
observed in the histogram, with the highest
concentration of data around the average,
and the frequency close to the limits.

C. DATA PREPARATION

During the data preparation phase, the study
employed Pearson’s correlation coefficient,
also known as linear correlation, to assess
the degree of relationship between two

quantitative variables. This coefficient
ranges from -1 to 1, with values closer to
zero indicating no relationship, those closer
to 1 or -1 suggesting strong positive or
negative correlations, respectively. In this
analysis, correlations exceeding 0.5 were
deemed significant, indicating a high
correlation level.

Specifically, attributes such as

"Transactions," "Length," "Entities,"
"PointsAdj," and "PointsNonAdjust"
exhibited correlation coefficients of 0.514,
0.586, 0.655, 0.716, and 0.733, respectively,
in relation to the Effort variable in the
Desharnais dataset, all surpassing the
threshold of 0.5. Consequently, these
attributes were identified as statistically
significant for the

the importance of features in estimating

software development effort.

988

To visually represent these correlations, a

scatter plot was generated, illustrating the
magnitude of correlation between the
aforementioned attributes and the Effort

variable. In such plots, positive correlation

is indicated by a clustering of points in an

upward trend, while negative correlation is
depicted by points concentrated along a
downward line.

Table 1: Desharnais Dataset Variables

correlation between the independent

variables and the dependent variable and
that most points on the scatter plot
approximate the straight line. For the dataset
available in Carvalho’s Work [11], it was
also performed the correlation between two
independent attributes, "N&C" and "R" with
the dependent attribute "AE". Figure 7 (a)

Table 2: Descriptive Statistics for the Desharnais
Dataset

Table 3: Descriptive Statistics for the Carvalho’s

Work Dataset

Figure 4: Effort Value Distribution

We noted noted that in Figure 6, the data
correlation has an specific direct (or
positive) linear association, showing a high

shows a high correlation between the

attributes "N&C" and "AE" (0.69). For
Figure 7 (b), it is observed a low correlation
between the attributes "R" and "AE".
Therefore, there seems to be no linear
association between the two variables. As
stated earlier, the correlation or correlation
coefficient measures the tendency of two
variables to change, depending on their
relationship.

After analyzing and preparing the datasets,

building the model for estimating the
software development effort based on the
ELM technique came next.

989

Figure 5: Pearson Correlation Desharnais Dataset

Figure 6: Correlation coefficients between variables

in the Desharnais database

Figure 7: Correlation Carvalho’s Work [11] Dataset

D. MODEL BUILDER

In this study, the software development
effort estimation model was built with the
Extreme Learning Machine technique. It

was compared with the literature models and
the same data set to estimate the effort was
used [23]. The models in the literature are
Linear Regression (LR), Support Vector
Machine (SVM), Nearest K-Neighbor
(KNN), and MultiLayer Perceptron (MLP).
1) Extreme Learning Machine The Extreme

Learning Machine (ELM) algorithm was

proposed by [37]. Its architecture is

equivalent to a Singlelayer Feedforward
Networks (SLFN) or Feedforward Neural
Network (FNN), with slight differences. The

weights of the input layer neurons are
generated randomly instead of being
adjusted, and the weights of the neurons of
the output layer are calculated analytically,
without using iterative processes as in
backpropagation. In this way, the output
layer’s activation function results in a linear
model [38]. According to Huang et al. [37],
and Huang et al. [21], the architecture of an
ELM can be represented with a hidden layer
with N˜ neurons. To learn N different
arbitrary samples (xi , ti), where xi = [xi1,
xi2, ..., xin] T R n and ti = [ti1, ti2, ..., tim]
T R m, input weights and hidden bias are
randomly generated and the activation
function is g(x). According to Huang et al.,
[37] and Huang et al., [21] the mathematical
formula of ELM is represented by:

where N˜ is the number of neurons in the
hidden layer and N is the number of training
samples, βi = [bi1, bi2, ..., bim] T represents
the weight vector that connects the i-th
hidden layer neuron to neurons of the output
layer, g(·) is the activation function, wi =
[wi1, wi2, ..., win] T is the weight vector that
connects the j-th hidden layer neuron and the

input layer neurons, xj represents each
distinct sample and bj denotes the bias of the
j-th neuron of the hidden layer. To make the
network outputs equal to the expected
results, in other words, to perform error
training equal to zero, there must be βi , wi
and bi so that the equation can be written as:

where tj are the outputs expected by the
network, referring to the xj sample input.

990

The previous N equations are written

compactly in the following equations:

H is called the hidden layer output matrix of

the neural network the i-th column of H is
the i-th neuron output vector of the hidden
layer in with respect to the entries x1, x2,. .
. , xN . In this study, we use the Extreme
Learning Machine model available at [39].
Machine learning techniques have
parameters that, most of the time,
significantly affect the performance of these
techniques. For our model we defined the
following parameters: n_hidden = 5, alpha =
1.0, rbf_width = 0.1 and activation =

’sigmoid’.

2) Other Models investigated

Linear Regression (LR) is a technique used

to predict an unknown dependent variable,
given the independent variables’ values.
[40]. Support Vector Machine (SVM) is a
machine learning algorithm used for
classification and regression. SVM used for
regression analysis is called Support Vector
Regression (SVR) [41]. K-Nearest Neighbor
(KNN) technique can be used for
classification or regression. In general, the
algorithm uses Euclidean distance to

calculate distances between its closest
neighbors. The results are based on the

average of the nearest neighbor k [41].

Multilayer Perceptron (MLP) neural
networks are feedforward neural networks
usually trained with a backpropagation

algorithm. Traditional MLP networks
contain at least three layers: an input layer, a
hidden layer, and an output layer. The
number of nodes in the input layer is defined
according to the independent variables
identified. In the hidden or intermediate
layer, the number of nodes is defined
through the configuration parameters. In
contrast, in the the output layer, the number
of nodes depends on the solution, the
number of dependent variables [42]. To

implement the models, we use the Python
language such as the libraries: Numpy [43],
Pandas [44], Scikit-Learn [45], and

Matplotlib [46].

4. EXPERIMENTAL EVALUATION

This section describes the measurements
used for model accuracy. A basic factor for
any forecasting model is whether forecasts
are accurate or not. It is possible to find
several metrics in the literature to assess the

software development effort estimation
models’ accuracy. The frequently used
assessment measures are MMRE and PRED
(k). According to Shepperd and MacDonell
[47], MMRE does not present a good
precision in the forecast of software effort
estimation because these criteria are biased.
Although being applied in this work, the
results are used only for comparison with
other results in the literature. In turn, the

performance indices, Mean Absolute Error
(MAE), Mean Square Error (MSE), and
Root Mean Square Error (RMSE), are being
used as metrics to assess the accuracy of the
evaluated model.

A. MEAN MAGNITUDE OF

RELATIVE ERROR

The Magnitude of Relative Error (MRE) is
the difference between the actual effort

991

(work done by the developer to complete the

project) and the predicted effort (estimated
using project management techniques),
divided by the real effort. MRE is

represented in Equation 7.

where yi is the actual effort, and yˆi is the
estimated effort, both of which are used in
software project i. The Mean Magnitude of
Relative Error (MMRE) is the average of the
MRE of the software project. MMRE is
calculated for each project in the dataset
following Equation 8

where n the number of cases in dataset. The
Mean Absolute Error is a measure of how far
the estimates are from actual values. MAE is
defined in Equation 9

yi is the ith value of the variable being
predicted, yˆi its estimate, yi − yˆi the ith
residual. Mean Squared Error (MSE) is the
mean quadratic difference between the
estimated values and the current value as
denoted in Equation 10.

Root Mean Squared Error (RMSE), as
denoted in Equation 11.

The sample of 500 iterations was calculated

as the Standard Deviation (SD) of the Error.
Besides, we performed statistical tests, such
as the Shapiro-Wilk [48] and Wilcoxon [49]

tests. It was also used relative p-value to

evaluate the performance of the models.

5. RESULTS AND DISCUSSION

This section delves into the results derived
from experiments conducted using both the
Desharnais [34] dataset and the dataset from

Carvalho’s [11] work. The model employed
is based on the ELM technique as per the
configurations outlined previously.
Algorithm 1 provides the pseudocode for
experimental evaluation.

A. DESHARNAIS DATASET

Various techniques including KNN, LR,
SRV, MLP, and ELM were applied to the
Desharnais [34] dataset. Mean and standard
deviation (SD) were analyzed for all
metrics, considering the 500 simulations
conducted for this dataset. Table 4 presents
the mean results, with the standard deviation
(SD) shown in parentheses representing the
standard deviation of errors in the dataset.

Figure 8 illustrates the MAE boxplot graph
for each model, revealing outliers in all
regression models except for the LR model.
Notably, the KNN, LR, SVM, and MLP

models are overestimated compared to the
applied ELM model. Thus, it's evident that
the applied ELM model yielded the best
results owing to its simplicity of usage,
faster learning speed, and superior
generalization performance. Furthermore,
the box and tail (boxplot) of the applied
ELM model are less distorted compared to
those of other commonly used models in the
literature.

Analyzing the results presented in Table 4, it
can be inferred that the ELM model

achieved the lowest error rates, confirming
its superior performance. However, in most
cases, validation of the results required
hypotheses to be conducted due to the
minimal gains observed in the second
decimal place.

992

Table 4: Desharnais: Comparison of the results

Means and Standard Deviation (SD) of the literature
study in [23]

FIGURE 8: Boxplots of Mean Absolute Error.

Before performing the hypothesis test, it was
verified the existence of normality between
the values using the ShapiroWilk test [48].
Since the dataset does not have a normal

distribution, the Wilcoxon hypothesis test
[49] was used with a 5% significance. In the

null hypothesis (H0), the model presents
results equal to or less than the applied ELM
model. Whereas, in the alternative

hypothesis (H1), the applied ELM model

had the smallest error shown in Equation 12

Table 5 shows the p-value results for the
Wilcoxon tests. With 95% confidence, the
null hypothesis (H0) is rejected. It is
possible to conclude that the difference

between the population medians is
statistically significant, according to the
Wilcoxon test.

Table 5: Results p-value

Table 6 shows the comparison with other

studies in the literature that used Desharnais
datasets to estimate software development
effort. According to the results presented in
Table 4, the applied ELM model obtained
better results than studies in the literature
due to its remarkable generalization
performance and implementation efficiency.

B. CARVALHO’S WORK DATASET

Similarly, the ELM technique was applied to

the dataset used by [11], considering two
independent variables, N&C and R. For this
dataset, 1000 simulations were conducted,
matching the number used by the author.
Table 7 displays the mean error results, with
standard deviation shown in parentheses
(SD) for errors in the dataset. The applied
ELM model with 2 and 5 hidden layers

993

exhibited greater stability and reliable

generalization performance.

Figure 9 depicts the boxplot graph of the

ELM Models with 2 and 5 hidden layers.
The "ELM with 2 and 5 n_hidden [11]"
exhibited a mean with greater variability
compared to the "ELM with 2 and 5 _hidden
applied" models. Additionally, data
dispersion in the "ELM with 2 and 5 _hidden
applied" models is minimal, showcasing

remarkable generalization performance.

Figure 9: MAE comparison between ELM models.

C. PERFORMANCE EVALUATION

This section compares the performance of

the applied ELM learning algorithm with
KNN, LR, SVM algorithms, and the
conventional back-propagation (MLP)
algorithm. All algorithm simulations were
executed using packages developed in
Python language and run in the Jupyter
Notebook environment, on an Intel(R)
Core(TM) i7 2.1 GHz CPU with 8 GB
RAM. To evaluate algorithm time

consumption, simulations were conducted
with 500 iterations, 1,000 iterations, 5,000
iterations, and 10,000 iterations. Figure 10
presents the comparison of time
consumption speed of the evaluated models.
The ELM algorithm outperformed the KNN
and MLP models in terms of speed and
demonstrated nearly identical performance
to the LR and SVM algorithms. Based on the
presented values, the ELM model was

approximately three times faster than the

backpropagation algorithm, MLP.

Figure 10: Comparison of time consumption of the

applied methods .

Table 7: Article: Results Means and Standard

Deviation (SD) of dataset available in Carvalho’s
[11] work

Finally, let’s answer our last research

question:

RQ2: Which machine learning technique

excels in effort estimation accuracy?

Throughout our investigation, we explored
five machine learning techniques utilized in
datasets to estimate software development
effort: (i) Linear Regression (LR), (ii)
Support Vector Machine (SVM), (iii) K-
Nearest Neighbor (KNN), (iv) Multilayer
Perceptron (MLP), and (v) Extreme
Learning Machine (ELM). Through
simulations, we assessed the accuracy of
effort estimation precision for each
technique, with ELM emerging as the most

promising, as depicted in Table 4, when
compared to other techniques commonly
employed in the literature.

994

Moreover, it's noteworthy that the

integration of machine learning in Software
Engineering holds significant potential
benefits. Given that Software Engineering

aims to achieve quality results outlined in
the project management plan, including
adhering to schedules (effort) and budgets
(cost), the utilization of machine learning
techniques for predicting software
development efforts can aid project teams in
addressing uncertainties in estimates
throughout the project lifecycle. This, in
turn, can contribute to delivering higher
quality project outcomes in terms of effort
and cost.

Table 6: Critical Evaluation Table of Related Work

6. THREATS TO VALIDITY

In this section, we will address the validity
of our study, considering internal and
external threats as well as construct validity
[50]. Internal validity pertains to the
examination of causal relations [50]. A
potential threat to internal validity is the

selection of ELM algorithm parameters. In
our study, we addressed this by explicitly
considering parameter selection as a step in
dealing with internal validity. For each
dataset utilized in the research, parameter
adjustments were necessary, given the
absence of established guidelines on
determining these parameters for each
dataset.

We randomly divided the data into training

and test sets in a 67% to 33% proportion,
respectively. Random assignment of data

can significantly influence model results.

However, since all models were executed on

the same datasets, this should not
significantly impact the overall study, as the
objective is to compare model performance

on the applied dataset.

External validity concerns the
generalization of study results beyond the
study to other scenarios [50]. One challenge
related to external validation in machine
learning is the limited number of samples
available in datasets. Due to the small size
of some datasets, the number of data points
available for testing is further constrained.
Additionally, the availability of datasets

from free software projects poses a
limitation, as data availability is often scarce
and sometimes requires payment, hindering
forecasting efforts due to a limited amount
of data.

Construction validity refers to the extent to

which the operational measures studied
represent the researcher's intentions and
align with the research questions [50]. One
metric used to evaluate model accuracy in
estimating software development effort was
the Mean Magnitude of Relative Error

(MMRE). However, according to Shepperd
and MacDonell [47], MMRE lacks precision
in forecasting software effort estimation.
Despite being used in this study, MMRE is
solely employed for comparison with other
results in the literature. We also utilized the
Mean Absolute Error (MAE), as proposed
by [47], as a more reliable metric for
measuring the accuracy of the software
effort estimation model.

7. CONCLUSION AND FUTURE

WORK

Obtaining a reliable and accurate estimate of

software development effort has long been a
challenge in Software Engineering.
Accurate estimation of effort and costs in the
project's initial phases would greatly benefit
the field. To address this, we applied a

995

machine learning technique, the Extreme

Learning Machine (ELM), for estimating
software development effort, comparing it
with other effort estimation models found in

the literature. The implemented model will
aid Specialists and Project Managers in
forecasting effort estimates, thus reducing
time and costs during the project execution
phase.

In our simulations, we utilized two datasets

from software projects reflecting real-world
scenarios: the Desharnais [34] dataset
containing 81 software projects from a
Canadian company, and the dataset
evaluated in Carvalho’s work [11],
comprising 231 software projects. For both
datasets, the data were divided into training
and testing sets in a 67% to 33% proportion,

respectively. Inputs were normalized to the
interval [0.15, 0.85], and data were
randomly assigned to training and testing
sets to ensure unbiased results.

While many projects traditionally use the

Mean Magnitude of Relative Error (MMRE)
to assess forecasting method accuracy in
estimating software project effort, we
adopted alternative metrics such as Mean
Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error
(RMSE) to evaluate the ELM model,

following recommendations from Shepperd
and MacDonell [47].

In the Desharnais [34] dataset, we conducted
experiments comparing the ELM technique

with other techniques in the literature,
including Linear Regression (LR), Support
Vector Machine (SVM), K-Nearest
Neighbor (KNN), and Multilayer Perceptron
(MLP). Similarly, in the dataset evaluated by
Carvalho’s work [11], experiments were
conducted, comparing our model with the
author’s model and adjusting parameters to
achieve better results.

A significant contribution of this study is the

comparison of the applied ELM model with
literature models used for predicting
software development effort estimates,

leading to reduced error estimate rates and
aiding project managers in improving effort
estimate forecasts during the project
lifecycle. Additionally, we used Pearson’s
correlation coefficient during the data
preparation process to identify variables
with high correlation, resulting in the
selection of potential variables for the
applied effort estimation model and
achieving better results compared to the
literature.

In conclusion, accurate and reliable

estimation of the effort required to complete
a project is crucial in Software Engineering.
Employing machine learning techniques
increases the project's chances of success
while reducing time and costs. For future
work, we propose using an optimization
method, such as Particle Swarm
Optimization (PSO), to optimize model
parameters for estimating software
development effort.

REFERENCES

[1] A. Ali and C. Gravino, “A systematic

literature review of software effort
prediction using machine learning
methods”, J. Softw. Evol. Process, vol. 31,
no 10, p. 1–25, 2019.

[2] PMI, "Project Management Body of
Knowledge (PMBOK®)", 6th ed. Newtwn
Square: Project Management Institute, Inc,

2017.

[3] N. Rankovic, D. Rankovic, M. Ivanovic,
and L. Lazic, “A new approach to software
effort estimation using different Artificial
Neural Network architectures and Taguchi
Orthogonal Arrays”, IEEE Access, vol. 9,

pp. 1–1, 2021.

996

[4] R. S. Pressman, "Software Engineering:

A Practitioner’s Approach", 8th ed.
McGraw-Hill, 2016.

[5] R. Saraiva et al., “A Bayesian Networks-

Based Method to Analyze the Validity of the
Data of Software Measurement Programs”,
IEEE Access, vol. 8, pp. 198801–198821,

2020.

[6] S. Tariq, M. Usman, and A. C. M. Fong,

“Selecting best predictors from large
software repositories for highly accurate
software effort estimation”, J. Softw. Evol.
Process, vol. 32, no 10, p. 1–19, 2020.

[7] C. Lopez-Martin, “A fuzzy logic model

for predicting the development effort of
short scale programs based upon two
independent variables”, Appl. Soft Comput.
J., vol. 11, no 1, p. 724–732, 2011.

[8] M. Hammad and A. Alqaddoumi,
"Features-level software effort estimation

using machine learning algorithms." 2018
International Conference on Innovation and
Intelligence for Informatics, Computing,
and Technologies, 3ICT 2018, p. 1–3, 2018.

[9] A. B. Nassif, et al. "Neural network
models for software development effort
estimation: a comparative study." Neural
Computing and Applications, v. 27, n. 8, p.
2369–2381, 2016. [10] V. Yurdakurban, N.
Erdogan, "Comparison of machine learning

methods ˇ for software project effort
estimation | Yazilim projelerinde i¸s gücü
tahmini için makine ögrenmesi
yöntemlerinin kar¸sila¸stirilmasi." ˇ 26th
IEEE Signal Processing and
Communications Applications Conference,
SIU 2018, p. 1–4, 2018.

[11] H. D. P. Carvalho, M. N. C. A. Lima, W.

B. Santos and R. A. de A. Fagunde,
“Ensemble Regression Models for Software
Development Effort Estimation: A

Comparative Study”, Int. J. Softw. Eng.
Appl., vol. 11, no 3, p. 71–86, May. 2020.

[12] A. A. Fadhil, R. G. H. Alsarraj, and A.
M. Altaie, “Software Cost Estimation Based

on Dolphin Algorithm,” IEEE Access, vol.
8, pp. 75279–75287, 2020.

[13] P. Pospieszny, B. Czarnacka-Chrobot
and A. Kobylinski, “An effective approach
for software project effort and duration
estimation with machine learning
algorithms”, J. Syst. Softw., vol. 137, p.

184–196, 2018.

[14] Y. Song, et al. "An efficient instance
selection algorithm for k nearest neighbor
regression." Neurocomputing, v. 251, p. 26–
34, 2017.

[15] M. Hosni, et al. "Heterogeneous
Ensembles for Software Development Effort
Estimation." Proceedings - 2016 3rd
International Conference on Soft
Computing and Machine Intelligence,
ISCMI 2016, p. 174–178, 2017.

[16] J. Zhang, et al. "Residual compensation
extreme learning machine for regression."
Neurocomputing, v. 311, p. 126–136, 2018.

[17] J. Zhang, et al. "Robust extreme

learning machine for modeling with
unknown noise.", Journal of the Franklin
Institute, v. 357, n. 14, p. 9885–9908, 2020.

[18] J. Zhang, et al. "Non-iterative and Fast
Deep Learning: Multilayer Extreme

Learning Machines." Journal of the Franklin
Institute, v. 357, n. 13, p. 8925–8955, 2020.

[19] J. Zhang, Y. Li and W. Xiao, "Integrated
Multiple Kernel Learning for Device-Free
Localization in Cluttered Environments

Using Spatiotemporal Information." IEEE
Internet of Things Journal, v. 8, n. 6, p.
4749–4761, 2021. [20] S. K. Pillai, M. K.
Jeyakumar, “Extreme Learning Machine for
Software Development Effort Estimation of
Small Programs”, Int. Conf. Circuit, Power
Comput. Technol., p. 1698–1703, 2014.

997

[21] G.-B. Huang, Q.-Y. Zhu, and C.-K.
Siew, “Extreme learning machine: Theory

and applications”, Neurocomputing-Neural
Networks Sel. Pap. from 7th Brazilian
Symp. Neural Networks (SBRN ’04), vol.
70, no 1–3, p. 489–501, Dec. 2006.

[22] D. Montgomery and G. Runger,

"Estatística Aplicada e Probabilidade para
Engenheiros", LTC, 5o ed., 2012.

[23] S. Shukla and S. Kumar, “Applicability

of Neural Network Based Models for
Software Effort Estimation”, in 2019 IEEE
World Congress on Services (SERVICES),
2019, vol. 2642–939X, p. 339–342.

[24] P. Jodpimai, P. Sophatsathit, and C.

Lursinsap, “Estimating software effort with
minimum features using neural functional
approximation”, Proc. - 2010 10th Int. Conf.
Comput. Sci. Its Appl. ICCSA 2010, p. 266–
273, 2010.

[25] A. L. I. Oliveira, P. L. Braga, R. M. F.
L. Lima, and M. L. Cornélio, “GA-based

method for feature selection and parameters
optimization for machine learning
regression applied to software effort
estimation”, Inf. Softw. Technol., vol. 52, p.
1155–1166, 2010.

[26] G. Gabrani and N. Saini, “Effort

estimation models using evolutionary
learning algorithms for software
development”, 2016 Symp. Colossal Data
Anal. Networking, CDAN 2016, 2016.

[27] M. Azzeh, “Software Effort Estimation

Based on Optimized Model Tree
Mohammad”, Proc. 7th Int. Conf. Predict.
Model. Softw. Eng. PROMISE 2011, p. 20–
21, 2011.

[28] I. A. P. Tierno and D. J. Nunes, “An
extended assessment of data-driven
Bayesian Networks in software effort
prediction”, Proc. - 2013 27th Brazilian
Symp. Softw. Eng. SBES 2013, p. 157–166,
2013.

[29] L. L. Minku and X. Yao, “Ensembles

and locality: Insight on improving software
effort estimation”, Inf. Softw. Technol., vol.
55, no 8, p. 1512–1528, 2013.

[30] C. L. Huang, C. J. Wang, “A GA-based
feature selection and parameters
optimizationfor support vector machines”,
Expert Syst. Appl., vol. 31, no 2, p. 231–
240, 2006.

[31] D. T. Pham et al., “The Bees Algorithm-
A Novel Tool for Complex Optimisation
Problems”, Intell. Prod. Mach. Syst., p. 454–
459, 2006.

[32] M. T. Rahman and M. M. Islam, "A

Comparison of Machine Learning
Algorithms to Estimate Effort in Varying
Sized Software." Proceedings of 2019 IEEE
Region 10 Symposium, TENSYMP 2019, v.

7, p. 137–142, 2019.

[33] T. R. Benala and R. Bandarupalli,
"Least Square Support Vector Machine in
Analogy-Based software development effort
estimation.", 2016 International Conference
on Recent Advances and Innovations in
Engineering, ICRAIE 2016, 2016.

[34] J. Sayyad Shirabad and T. J. Menzies,
“The PROMISE Repository of Software
Engineering Databases”, Promise, 2005.
[Online]. Available at:

http://promise.site.uottawa.ca/SERepositor

y. Accessed on: Oct. 24, 2020.

998

http://promise.site.uottawa.ca/SERepositor

	*1Chenga Jhansi, *2Perati Mani Preetham, *3Kasireddy Srinivas Reddy, *4Abdul Razzaq,
	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. RESEARCH METHODOLOGY
	A. ANALYSIS OF SYSTEMATIC LITERATURE REVIEW
	B. CHOOSING THE DATASET
	D. MODEL BUILDER
	4. EXPERIMENTAL EVALUATION
	A. MEAN MAGNITUDE OF RELATIVE ERROR
	5. RESULTS AND DISCUSSION
	A. DESHARNAIS DATASET
	B. CARVALHO’S WORK DATASET
	C. PERFORMANCE EVALUATION
	6. THREATS TO VALIDITY
	7. CONCLUSION AND FUTURE WORK
	REFERENCES

