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ABSTRACT 

In the field of software engineering, the 
project management approach has been 
utilized to help managers maintain project 
control. Estimating the amount of work 
needed to finish a project with precision and 
dependability is one of the key steps in 
software engineering. The article's goals are 
to: i) use the correlation to find the variables 
that affect the estimation; and ii) apply the 
Extreme Learning Machine (ELM) model 
for effort estimation and compare it with 
other models in the literature. Therefore, the 
method with the highest accuracy for effort 
prediction was studied. Based on statistical 
tests and absolute mean residue (MAR) 
criteria predictive precision, the models 
were compared to one another. The study's 
primary conclusions were that: i) there are 
significant effort estimation factors; and ii) 
the ELM model outperforms other models in 
the literature in terms of software design 
effort estimation. Thus, the application of 
machine learning methods in the endeavor 
the likelihood that the project's price and 
time estimates will be accurate can be 
increased by using an estimation procedure. 

 
Key Words: Extreme Learning Machine, 
Machine Learning, Effort Estimation, 
Software Development, Project 
Management 

1. INTRODUCTION 

For many years, forecasting models for 
software development efforts have been 
assessed in order to satisfy the demands of 
the software sectors [1]. One of the project 

management procedures that determines 
how much work is needed to finish the 
project is estimating the software 
development effort [2]. As a result, one of 
the most important factors in lowering risks 
and raising project success rates is accurate 
effort estimation [3].The process of 
managing software projects involves 
carrying out tasks using strategies to meet 
the goals of the projects [4]. In order to 
satisfy customer needs, both quantitative 
and qualitative metrics are estimated during 
the software development phase. Successful 
software measurement programs, in 
accordance with Saraiva [5], enable users to 
comprehend data and facilitate decision- 
making. 

 
There are various methods for calculating 
the effort. In order to deliver the product 
within the projected time and cost, the 
business must determine which technique is 
best [6]. Expert Judgment is one method that 
project managers employ to estimate the 
amount of work required to build software 
[7]. Still, because human error can occur, 
this kind of approach has its limitations. 
Since different project development 
lifecycle models need a varied amount of 
effort at each stage of the process, estimating 
software effort is one of the biggest issues 
faced by developers and project managers in 
the field of software engineering [8]. 
Conventional estimates [9] are more 
complicated and time-consuming since they 
necessitate an effort to document operations. 
Furthermore, it is not always possible to 
foresee a wide range of elements and their 
relationships, the experience of software 
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engineers, and the software team's project 
history in the same business field [10]. 

 
Therefore, because machine learning (ML) 
has the ability to learn and change its 
behavior on its own, it presents an effective 
alternative for Software Development Effort 
Estimation (SDEE). Additionally, they 
support decision-making based on data 
analysis with the least amount of 
professional human intervention [3]. As a 
result, experts focus more of their time on 
other system chores that delight customers 
and less time estimating the project [1]. 
Furthermore, the project's initial phase 
objectives are not always well stated. The 
project's effective management is impacted 
by the uncertainty around the essential 
estimates for the project's development. A 
accurate assessment of the work required 
during the first stage of the software 
development life cycle is necessary to 
determine how much funding will be 
allocated for the project's development [11]. 
Fadhil [12] asserts that the process of 
estimating project expenses from the outset 
is very important since it is required for 
calculating the resources and budget needed 
to complete the project. 

 
Put another way, the primary causes of 
software project failure are ambiguities 
surrounding system requirements and a 
lackluster assessment of the time, money, 
and labor needed to complete the project. 
Consequently, during the past few years, 
software development efforts have been 
predicted using Machine Learning (ML) 
approaches in an effort to reduce uncertainty 
during the software development cycle [3] 
[13].Asad Ali and Carmine Gravino's 
Systematic Literature Review (SLR) [1] 
states that over the past ten years, a number 
of machine learning techniques, including 
Multilayer Perceptron (MLP), Artificial 
Neural Network (ANN), Support Vector 
Regression (SVR), Support Vector Machine 
(SVM), Bayesian Network (BN), K-Nearest 
Neighbors (kNNs), and Extreme Learning 

Machine (ELM), have been used to predict 
the software development effort. 

 
In this article, the software work is estimated 
using five machine learning algorithms: 
Extreme Learning Machine (ELM), Support 
Vector Machine (SVM), K-Nearest 
Neighbors (kNNs), Multilayer Perceptron 
(MLP), and Linear Regression (LR). KNN 
is a non-parametric method used for 
regression and classification problems, 
where the population size may cause the 
algorithm to execute slowly and use a lot of 
memory [14]. Although SVM is a technique 
that may be used to model both linear and 
nonlinear problems, training it on huge 
amounts of data can be time-consuming 
[13]. According to [15], MLP networks are 
also employed for regression and 
classification. However, a number of 
factors, including the number of hidden 
layers, the number of neurons in each hidden 
layer, the number of training periods, and 
the learning rate, need to be carefully 
considered. 

 
Numerous modified ELM algorithms, such 
as Integrated Multiple Kernel ELM (IMK- 
ELM) [19], Multilayer Extreme Learning 
Machines (ML-ELM) [18], Residual 
Compensation ELM (RC-ELM) [16], and 
Robust ELM (R-ELM) [17], have been 
proposed recently. These previously 
mentioned algorithms have been widely 
used in a variety of fields, including deep 
learning, the free location of devices in 
environments that are disordered using 
spatiotemporal information, the prediction 
of the rate of gas used in the blast furnace 
during the manufacture of iron, and the 
treatment of tasks with Gaussian and 
nonGaussian noise. 
Out of the 75 primary papers that the 
Systematic Literature Review (SLR) [1] has 
identified, only one [20] of them use the 
ELM technique for Software Development 
Effort Estimation (SDEE). The SLR also 
shows that feedforward networks are the 
most often used kind of Artificial Neural 
Networks (ANN) among other ANN kinds. 
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However, Huang [21] claims that training an 
ELM can result in higher generalization 
performance since it can be faster than 
training a neural network by 
backpropagation. In this way, the benefits of 
applying the ELM technique for Software 
Development Effort Estimation (SDEE) 
form the basis of our study. 

In order to address the two study issues 
addressed in the part cited in parenthesis, 
this paper additionally looked at which 
attributes should be chosen to get the best 
outcomes in the effort estimates and how 
accurate the software effort estimate is. 
RQ1: What characteristics are crucial to get 
better estimates of the work required to 
develop  software?  (Part  III-C) 
RQ2: Which machine learning method has 
the best accuracy in effort estimation? 
Section V 

 
To address the first question, an analysis of 
Pearson's correlation coefficient [22] 
between the variables and their significance 
was conducted. RQ1. Lastly, an analysis 
was conducted to compare the model ELM's 
performance with the models for software 
effort estimating that have been studied in 
the literature [11] [23] [24] [25] [26] [27] 
[28] [29]. The Magnitude of Relative Error 
(MRE), Mean Absolute Error (MAE), and 
Mean Square Error (MSE) criteria were used 
to obtain the answers for the second question 
RQ2. 

 
In summary, the primary contribution of this 
paper is to show how to use the ELM 
technique to build a machine learning model 
and apply it to a dataset used to estimate 
software development efforts. It produces 
outcomes that are on par with or better than 
those of the models studied in the literature. 
In addition, to improve the field of software 
engineering by saving money and time 
during the project life cycle stages. The 
structure of this document is as follows. 
Related works are included in Section II. 
The research approach is presented in 
Section   III.   The   model   accuracy 

measurements are presented in Section IV. 
The experiment findings are shown in 
Section V. There are challenges to validity 
in Section VI. Section VII deals with closing 
thoughts and upcoming projects. 

 
2. RELATED WORK 

The investigation carried out by [23] 
conducted a comparative analysis of 
different machine learning methods for 
predicting software development effort, 
including Linear Regression (LR), Support 
Vector Machine (SVM), K-Nearest 
Neighbor (KNN), and Multi-Layer 
Perceptron Neural Network (MLPNN). 
They utilized the determination coefficient 
(R2) to evaluate these models. Meanwhile, 
[24] employed a Neural Feedforward 
Network to enhance the accuracy of 
Software Development Effort Estimation. 
Another study, [28], assessed the 
effectiveness of Bayesian Networks (BNs) 
in predicting software effort through 
rigorous validation procedures. 

Oliveira [25] employed the Genetic 
Algorithm (GA) as a Machine Learning 
(ML) technique, while [30] proposed a GA- 
based feature model, both aimed at selecting 
input resources and optimizing parameters 
for ML techniques in estimating software 
development efforts. Additionally, [27] 
explored the use of the Bees Algorithm [31] 
to select parameters for the Model Tree 
(MT) depending on the dataset used. 
Conversely, [26] introduced non- 
algorithmic techniques for effort estimation, 
noting the superior performance of 
evolutionary algorithms. 

 
Minku's work [29] involved experimental 
studies on automated machine learning 
ensembles, showing promising performance 
across various datasets. Rahman's research 
[32] implemented different machine 
learning algorithms, such as Radial Based 
Function Neural Network (RBFNN), 
Extreme Learning Machine (ELM), and 
Decision Tree (DT), for effort estimation 
based on software size categories. ISBSG 
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Release 11 dataset was used for training and 
testing these algorithms, revealing varying 
degrees of effectiveness across different 
software sizes. 

In another study [33], a case-based 
reasoning model hybridized with machine 
learning models (ABE-LS-SVM, ABE- 
ELM, ABE-ANN) was utilized, with ABE- 
LS-SVM showing superior performance 
across multiple datasets. 

 
Extreme Learning Machine (ELM) and 
Linear Least Squares Regression (LSR) 
were applied in [20] and [11] to estimate 
effort for a set of small programs. Mean 
Magnitude of Relative Error (MMRE) was 
used for performance analysis, with 
adjustments made to ELM parameters based 
on prediction errors. Other metrics such as 
MAE, MSE, and RMSE were also used to 
assess model performance. The Desahanais 
dataset was added to confirm the 
effectiveness of the applied ELM model. 
Statistical tests, including normality and 
hypothesis tests, were conducted to compare 
the proposed model's performance with 
others in the literature, along with temporal 
performance tests and the presentation of 
results using Box-Plot graphs, showing 
significantly improved outcomes. 

 
3. RESEARCH METHODOLOGY 

This section outlines the methodology 
employed to construct the ELM model for 
software effort estimation. Figure 1 
illustrates the proposed methodology for 
precise effort prediction, comprising six 
phases: Analysis (Section III-A), Select 
Data Set (Section III-B), Data Preparation 
(Section III-C), Modeling (Section III-D), 
Experimental Evaluation (Section IV), and 
Effort Forecasting (Section V). 

 
A. ANALYSIS OF SYSTEMATIC 

LITERATURE REVIEW 
The development of the effort estimation 
model for software development was guided 
by the Systematic Literature Review (SLR) 
conducted by [1]. The SLR encompassed 

empirical studies published from January 
1991 to December 2017, resulting in the 
selection of 75 primary studies based on 
specific criteria. Among the machine 
learning (ML) techniques used in these 
studies, Artificial Neural Network (ANN) 
was the most prevalent, employed in 60% of 
cases, followed by Support Vector Machine 
(SVM) at 25%, and Case-Based Reasoning 
(CBR) at 17%. Bayesian Network (BN), K- 
Nearest Neighbors (KNNs), Decision Tree 
(DT), Genetic Programming (GP), 
Classification and Regression Tree (CART), 
and Random Forest (RF) were less 
frequently utilized. 

 
The databases predominantly utilized in the 
75 primary studies were NASA (23%), 
COCOMO, and ISBSG, each accounting for 
21% of references, followed by Desharnais 
(19%). Kemerer, Maxwell, Albrecht, 
Tukutuku, Finnish, and Miyazaki were the 
least cited databases. 

 
Primary studies from the past decade were 
selected based on the systematic review. 
Figure 2(a) highlights the Top 10 machine 
learning techniques, with ANN and MLP 
cited in 11 studies each, and SVR in 8 
reviews, as the most frequently mentioned. 
Figure 2(b) showcases the Top 10 datasets 
used during this period, with the COCOMO 
dataset mentioned in 20 studies, followed by 
ISBSG and NASA in 11 and 8 reviews, 
respectively. 

 
Among various types of Artificial Neural 
Networks (ANN), the ELM technique was 
mentioned in only one primary study [20]. 
As per Huang [21], training an ELM can be 
faster compared to training a neural network 
via backpropagation, often resulting in 
better generalization performance. Given 
these advantages for Software Development 
Effort Estimation (SDEE), the ELM 
technique was chosen for modeling in this 
study. 

 
Datasets were scrutinized for the selection of 
the appropriate technique to estimate 
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software development effort. The 
Desharnais dataset [34] was chosen, as it is 
relatively underexplored among effort 
estimation models (Section III-B1). 

The software development estimation 
generated by our model will be compared 

with other models in the literature. 
Additionally, Carvalho's dataset referenced 
in Section III-B2 will be utilized to compare 
our model's performance with the proposed 
models in Carvalho's article [11]. 

 
 

 

 
 
 

Figure 1: Proposed Methodology for Accurate Effort Prediction 

 
 

 

 
Figure 2: Top 10 of the Techniques and Dataset 

used in the last 10 years 

 

B. CHOOSING THE DATASET 

This subsection provides a descriptive 

analysis of the datasets utilized in 
constructing our model: 

1) Desharnais Dataset 

The Desharnais dataset [34] comprises 
information from 81 software projects from 
a Canadian company. Each project includes 
12 attributes: Project id, Team Experience, 
Manager Experience, Year End, Length, 
Effort, Transaction, Entities, Point Adj, 
Adjustment, Point Non-Adjust, and 
Language, categorized into numeric and 

categorical attributes, as outlined in Table 1. 

Based on Table 1, only the numerical data 
was selected, excluding the "Project" 
attribute as it is not correlated with the 

project effort estimate. With the selected 
attributes, the subsequent step was to 
identify the independent variables and the 
dependent variable. Following software 
development effort estimation models, the 
primary variable is the effort required to 
complete the project. In this case, the 
dependent attribute is "Effort," with the 

987 



correlated independent attributes being 

"TeamExp," "ManagerExp," "YearEnd," 
"Length," "Transactions," "Entities," 
"PointsNonAjust," "Envergure," and 

"PointsAdj." 

Table 2 presents statistical measures for all 
independent and dependent attributes. The 
elapsed time (Length) of the 81 measured 
projects ranged from 1 to 39 months, with an 
average of 11.7 months. Two attributes 
representing the software size, 
"PointsNonAdjust" and "PointsAdjust," 
have a minor difference, with an average of 
304 for PointsNonAdjust and 289 for 

PointsAdjust. The recorded level of effort 
ranged from 546 to 23,940 person-hours, 
with an average of 5,046.31 person-hours. 

Figure 3 depicts a histogram illustrating the 
distribution of data on effort, the dependent 
variable, measured in person-hours. The 
variables exhibit positive skewness, with the 
majority of records situated towards lower 
values and some outliers with very high 

values. 
 

 
Figure 3: Distribution of the effort value in the 

Desharnais database 

2) Carvalho’s Work [11] 

The second set of analyzed data is sourced 

from [11], encompassing 231 software 
projects with 5 attributes categorized into 
numeric and string types: "P" (Program 
Number), "N&C" (New and Changed 
Code), comprising added and modified 
code, "R" (Reused Code), recognized as 
physical lines of code (LOC), and "AE" 
(Actual Effort), measured in minutes, are 
construction of the model, effectively 
addressing the research question concerning 

numeric types, while "DP" (Developer 

Code) is a string type.In this dataset, only the 
numeric attributes were selected, and the "P" 
attribute was excluded as it is unrelated to 

the effort estimate. Descriptive statistics for 
the selected attributes are presented in Table 
3. During dataset analysis, two independent 
attributes, "N&C" (New and Changed Code) 
and "R" (Reused Code), were identified, 
along with the target attribute, "AE" (Actual 
Effort), as the dependent variable. 

Figure 4 illustrates a histogram depicting the 

distribution of the dependent variable (AE- 
effort) in relation to effort, measured in 
minutes. A normal distribution trend is 
observed in the histogram, with the highest 
concentration of data around the average, 
and the frequency close to the limits. 

C. DATA PREPARATION 

During the data preparation phase, the study 
employed Pearson’s correlation coefficient, 
also known as linear correlation, to assess 
the degree of relationship between two 

quantitative variables. This coefficient 
ranges from -1 to 1, with values closer to 
zero indicating no relationship, those closer 
to 1 or -1 suggesting strong positive or 
negative correlations, respectively. In this 
analysis, correlations exceeding 0.5 were 
deemed significant, indicating a high 
correlation level. 

Specifically, attributes such as 

"Transactions," "Length," "Entities," 
"PointsAdj," and "PointsNonAdjust" 
exhibited correlation coefficients of 0.514, 
0.586, 0.655, 0.716, and 0.733, respectively, 
in relation to the Effort variable in the 
Desharnais dataset, all surpassing the 
threshold of 0.5. Consequently, these 
attributes were identified as statistically 
significant for the 

the importance of features in estimating 

software development effort. 
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To visually represent these correlations, a 

scatter plot was generated, illustrating the 
magnitude of correlation between the 
aforementioned attributes and the Effort 

variable. In such plots, positive correlation 

is indicated by a clustering of points in an 

upward trend, while negative correlation is 
depicted by points concentrated along a 
downward line. 

 

 

Table 1: Desharnais Dataset Variables 

correlation between the independent 

variables and the dependent variable and 
that most points on the scatter plot 
approximate the straight line. For the dataset 
available in Carvalho’s Work [11], it was 
also performed the correlation between two 
independent attributes, "N&C" and "R" with 
the dependent attribute "AE". Figure 7 (a) 

Table 2: Descriptive Statistics for the Desharnais 
Dataset 

 

 

Table 3: Descriptive Statistics for the Carvalho’s 

Work Dataset 
 

Figure 4: Effort Value Distribution 

We noted noted that in Figure 6, the data 
correlation has an specific direct (or 
positive) linear association, showing a high 

shows a high correlation between the 

attributes "N&C" and "AE" (0.69). For 
Figure 7 (b), it is observed a low correlation 
between the attributes "R" and "AE". 
Therefore, there seems to be no linear 
association between the two variables. As 
stated earlier, the correlation or correlation 
coefficient measures the tendency of two 
variables to change, depending on their 
relationship. 

After analyzing and preparing the datasets, 

building the model for estimating the 
software development effort based on the 
ELM technique came next. 
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Figure 5: Pearson Correlation Desharnais Dataset 

 

 
Figure 6: Correlation coefficients between variables 

in the Desharnais database 

 

 
Figure 7: Correlation Carvalho’s Work [11] Dataset 

D. MODEL BUILDER 

In this study, the software development 
effort estimation model was built with the 
Extreme Learning Machine technique. It 

was compared with the literature models and 
the same data set to estimate the effort was 
used [23]. The models in the literature are 
Linear Regression (LR), Support Vector 
Machine (SVM), Nearest K-Neighbor 
(KNN), and MultiLayer Perceptron (MLP). 
1) Extreme Learning Machine The Extreme 

Learning Machine (ELM) algorithm was 

proposed by [37]. Its architecture is 

equivalent to a Singlelayer Feedforward 
Networks (SLFN) or Feedforward Neural 
Network (FNN), with slight differences. The 

weights of the input layer neurons are 
generated randomly instead of being 
adjusted, and the weights of the neurons of 
the output layer are calculated analytically, 
without using iterative processes as in 
backpropagation. In this way, the output 
layer’s activation function results in a linear 
model [38]. According to Huang et al. [37], 
and Huang et al. [21], the architecture of an 
ELM can be represented with a hidden layer 
with N˜ neurons. To learn N different 
arbitrary samples (xi , ti), where xi = [xi1, 
xi2, ..., xin] T R n and ti = [ti1, ti2, ..., tim] 
T R m, input weights and hidden bias are 
randomly generated and the activation 
function is g(x). According to Huang et al., 
[37] and Huang et al., [21] the mathematical 
formula of ELM is represented by: 

 

 
where N˜ is the number of neurons in the 
hidden layer and N is the number of training 
samples, βi = [bi1, bi2, ..., bim] T represents 
the weight vector that connects the i-th 
hidden layer neuron to neurons of the output 
layer, g(·) is the activation function, wi = 
[wi1, wi2, ..., win] T is the weight vector that 
connects the j-th hidden layer neuron and the 

input layer neurons, xj represents each 
distinct sample and bj denotes the bias of the 
j-th neuron of the hidden layer. To make the 
network outputs equal to the expected 
results, in other words, to perform error 
training equal to zero, there must be βi , wi 
and bi so that the equation can be written as: 

 

where tj are the outputs expected by the 
network, referring to the xj sample input. 
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The previous N equations are written 

compactly in the following equations: 

 

H is called the hidden layer output matrix of 

the neural network the i-th column of H is 
the i-th neuron output vector of the hidden 
layer in with respect to the entries x1, x2,. . 
. , xN . In this study, we use the Extreme 
Learning Machine model available at [39]. 
Machine learning techniques have 
parameters that, most of the time, 
significantly affect the performance of these 
techniques. For our model we defined the 
following parameters: n_hidden = 5, alpha = 
1.0, rbf_width = 0.1 and activation = 

’sigmoid’. 

2) Other Models investigated 

Linear Regression (LR) is a technique used 

to predict an unknown dependent variable, 
given the independent variables’ values. 
[40]. Support Vector Machine (SVM) is a 
machine learning algorithm used for 
classification and regression. SVM used for 
regression analysis is called Support Vector 
Regression (SVR) [41]. K-Nearest Neighbor 
(KNN) technique can be used for 
classification or regression. In general, the 
algorithm uses Euclidean distance to 

calculate distances between its closest 
neighbors. The results are based on the 

average of the nearest neighbor k [41]. 

Multilayer Perceptron (MLP) neural 
networks are feedforward neural networks 
usually trained with a backpropagation 

algorithm. Traditional MLP networks 
contain at least three layers: an input layer, a 
hidden layer, and an output layer. The 
number of nodes in the input layer is defined 
according to the independent variables 
identified. In the hidden or intermediate 
layer, the number of nodes is defined 
through the configuration parameters. In 
contrast, in the the output layer, the number 
of nodes depends on the solution, the 
number of dependent variables [42]. To 

implement the models, we use the Python 
language such as the libraries: Numpy [43], 
Pandas  [44],  Scikit-Learn  [45],  and 

Matplotlib [46]. 

4. EXPERIMENTAL EVALUATION 

This section describes the measurements 
used for model accuracy. A basic factor for 
any forecasting model is whether forecasts 
are accurate or not. It is possible to find 
several metrics in the literature to assess the 

software development effort estimation 
models’ accuracy. The frequently used 
assessment measures are MMRE and PRED 
(k). According to Shepperd and MacDonell 
[47], MMRE does not present a good 
precision in the forecast of software effort 
estimation because these criteria are biased. 
Although being applied in this work, the 
results are used only for comparison with 
other results in the literature. In turn, the 

performance indices, Mean Absolute Error 
(MAE), Mean Square Error (MSE), and 
Root Mean Square Error (RMSE), are being 
used as metrics to assess the accuracy of the 
evaluated model. 

A. MEAN MAGNITUDE OF 

RELATIVE ERROR 

The Magnitude of Relative Error (MRE) is 
the difference between the actual effort 
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(work done by the developer to complete the 

project) and the predicted effort (estimated 
using project management techniques), 
divided by the real effort. MRE is 

represented in Equation 7. 

 

where yi is the actual effort, and yˆi is the 
estimated effort, both of which are used in 
software project i. The Mean Magnitude of 
Relative Error (MMRE) is the average of the 
MRE of the software project. MMRE is 
calculated for each project in the dataset 
following Equation 8 

 

where n the number of cases in dataset. The 
Mean Absolute Error is a measure of how far 
the estimates are from actual values. MAE is 
defined in Equation 9 

 

 
yi is the ith value of the variable being 
predicted, yˆi its estimate, yi − yˆi the ith 
residual. Mean Squared Error (MSE) is the 
mean quadratic difference between the 
estimated values and the current value as 
denoted in Equation 10. 

 

Root Mean Squared Error (RMSE), as 
denoted in Equation 11. 

 

The sample of 500 iterations was calculated 

as the Standard Deviation (SD) of the Error. 
Besides, we performed statistical tests, such 
as the Shapiro-Wilk [48] and Wilcoxon [49] 

tests. It was also used relative p-value to 

evaluate the performance of the models. 

5. RESULTS AND DISCUSSION 

This section delves into the results derived 
from experiments conducted using both the 
Desharnais [34] dataset and the dataset from 

Carvalho’s [11] work. The model employed 
is based on the ELM technique as per the 
configurations outlined previously. 
Algorithm 1 provides the pseudocode for 
experimental evaluation. 

A. DESHARNAIS DATASET 

Various techniques including KNN, LR, 
SRV, MLP, and ELM were applied to the 
Desharnais [34] dataset. Mean and standard 
deviation (SD) were analyzed for all 
metrics, considering the 500 simulations 
conducted for this dataset. Table 4 presents 
the mean results, with the standard deviation 
(SD) shown in parentheses representing the 
standard deviation of errors in the dataset. 

Figure 8 illustrates the MAE boxplot graph 
for each model, revealing outliers in all 
regression models except for the LR model. 
Notably, the KNN, LR, SVM, and MLP 

models are overestimated compared to the 
applied ELM model. Thus, it's evident that 
the applied ELM model yielded the best 
results owing to its simplicity of usage, 
faster learning speed, and superior 
generalization performance. Furthermore, 
the box and tail (boxplot) of the applied 
ELM model are less distorted compared to 
those of other commonly used models in the 
literature. 

Analyzing the results presented in Table 4, it 
can be inferred that the ELM model 

achieved the lowest error rates, confirming 
its superior performance. However, in most 
cases, validation of the results required 
hypotheses to be conducted due to the 
minimal gains observed in the second 
decimal place. 
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Table 4: Desharnais: Comparison of the results 

Means and Standard Deviation (SD) of the literature 
study in [23] 

 

 
FIGURE 8: Boxplots of Mean Absolute Error. 

Before performing the hypothesis test, it was 
verified the existence of normality between 
the values using the ShapiroWilk test [48]. 
Since the dataset does not have a normal 

distribution, the Wilcoxon hypothesis test 
[49] was used with a 5% significance. In the 

null hypothesis (H0), the model presents 
results equal to or less than the applied ELM 
model.  Whereas,  in  the  alternative 

hypothesis (H1), the applied ELM model 

had the smallest error shown in Equation 12 

 

 
Table 5 shows the p-value results for the 
Wilcoxon tests. With 95% confidence, the 
null hypothesis (H0) is rejected. It is 
possible to conclude that the difference 

between the population medians is 
statistically significant, according to the 
Wilcoxon test. 

 

 
Table 5: Results p-value 

Table 6 shows the comparison with other 

studies in the literature that used Desharnais 
datasets to estimate software development 
effort. According to the results presented in 
Table 4, the applied ELM model obtained 
better results than studies in the literature 
due to its remarkable generalization 
performance and implementation efficiency. 

B. CARVALHO’S WORK DATASET 

Similarly, the ELM technique was applied to 

the dataset used by [11], considering two 
independent variables, N&C and R. For this 
dataset, 1000 simulations were conducted, 
matching the number used by the author. 
Table 7 displays the mean error results, with 
standard deviation shown in parentheses 
(SD) for errors in the dataset. The applied 
ELM model with 2 and 5 hidden layers 
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exhibited greater stability and reliable 

generalization performance. 

Figure 9 depicts the boxplot graph of the 

ELM Models with 2 and 5 hidden layers. 
The "ELM with 2 and 5 n_hidden [11]" 
exhibited a mean with greater variability 
compared to the "ELM with 2 and 5 _hidden 
applied" models. Additionally, data 
dispersion in the "ELM with 2 and 5 _hidden 
applied" models is minimal, showcasing 

remarkable generalization performance. 

 

 
Figure 9: MAE comparison between ELM models. 

C. PERFORMANCE EVALUATION 

This section compares the performance of 

the applied ELM learning algorithm with 
KNN, LR, SVM algorithms, and the 
conventional back-propagation (MLP) 
algorithm. All algorithm simulations were 
executed using packages developed in 
Python language and run in the Jupyter 
Notebook environment, on an Intel(R) 
Core(TM) i7 2.1 GHz CPU with 8 GB 
RAM. To evaluate algorithm time 

consumption, simulations were conducted 
with 500 iterations, 1,000 iterations, 5,000 
iterations, and 10,000 iterations. Figure 10 
presents the comparison of time 
consumption speed of the evaluated models. 
The ELM algorithm outperformed the KNN 
and MLP models in terms of speed and 
demonstrated nearly identical performance 
to the LR and SVM algorithms. Based on the 
presented  values,  the ELM  model was 

approximately three times faster than the 

backpropagation algorithm, MLP. 

 

Figure 10: Comparison of time consumption of the 

applied methods . 

 

 
Table 7: Article: Results Means and Standard 

Deviation (SD) of dataset available in Carvalho’s 
[11] work 

Finally, let’s answer our last research 

question: 

RQ2: Which machine learning technique 

excels in effort estimation accuracy? 

Throughout our investigation, we explored 
five machine learning techniques utilized in 
datasets to estimate software development 
effort: (i) Linear Regression (LR), (ii) 
Support Vector Machine (SVM), (iii) K- 
Nearest Neighbor (KNN), (iv) Multilayer 
Perceptron (MLP), and (v) Extreme 
Learning Machine (ELM). Through 
simulations, we assessed the accuracy of 
effort estimation precision for each 
technique, with ELM emerging as the most 

promising, as depicted in Table 4, when 
compared to other techniques commonly 
employed in the literature. 
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Moreover, it's noteworthy that the 

integration of machine learning in Software 
Engineering holds significant potential 
benefits. Given that Software Engineering 

aims to achieve quality results outlined in 
the project management plan, including 
adhering to schedules (effort) and budgets 
(cost), the utilization of machine learning 
techniques for predicting software 
development efforts can aid project teams in 
addressing uncertainties in estimates 
throughout the project lifecycle. This, in 
turn, can contribute to delivering higher 
quality project outcomes in terms of effort 
and cost. 

 

 
Table 6: Critical Evaluation Table of Related Work 

6. THREATS TO VALIDITY 

In this section, we will address the validity 
of our study, considering internal and 
external threats as well as construct validity 
[50]. Internal validity pertains to the 
examination of causal relations [50]. A 
potential threat to internal validity is the 

selection of ELM algorithm parameters. In 
our study, we addressed this by explicitly 
considering parameter selection as a step in 
dealing with internal validity. For each 
dataset utilized in the research, parameter 
adjustments were necessary, given the 
absence of established guidelines on 
determining these parameters for each 
dataset. 

We randomly divided the data into training 

and test sets in a 67% to 33% proportion, 
respectively. Random assignment of data 

can significantly influence model results. 

However, since all models were executed on 

the same datasets, this should not 
significantly impact the overall study, as the 
objective is to compare model performance 

on the applied dataset. 

External validity concerns the 
generalization of study results beyond the 
study to other scenarios [50]. One challenge 
related to external validation in machine 
learning is the limited number of samples 
available in datasets. Due to the small size 
of some datasets, the number of data points 
available for testing is further constrained. 
Additionally, the availability of datasets 

from free software projects poses a 
limitation, as data availability is often scarce 
and sometimes requires payment, hindering 
forecasting efforts due to a limited amount 
of data. 

Construction validity refers to the extent to 

which the operational measures studied 
represent the researcher's intentions and 
align with the research questions [50]. One 
metric used to evaluate model accuracy in 
estimating software development effort was 
the Mean Magnitude of Relative Error 

(MMRE). However, according to Shepperd 
and MacDonell [47], MMRE lacks precision 
in forecasting software effort estimation. 
Despite being used in this study, MMRE is 
solely employed for comparison with other 
results in the literature. We also utilized the 
Mean Absolute Error (MAE), as proposed 
by [47], as a more reliable metric for 
measuring the accuracy of the software 
effort estimation model. 

7. CONCLUSION AND FUTURE 

WORK 

Obtaining a reliable and accurate estimate of 

software development effort has long been a 
challenge in Software Engineering. 
Accurate estimation of effort and costs in the 
project's initial phases would greatly benefit 
the field. To address this, we applied a 
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machine learning technique, the Extreme 

Learning Machine (ELM), for estimating 
software development effort, comparing it 
with other effort estimation models found in 

the literature. The implemented model will 
aid Specialists and Project Managers in 
forecasting effort estimates, thus reducing 
time and costs during the project execution 
phase. 

In our simulations, we utilized two datasets 

from software projects reflecting real-world 
scenarios: the Desharnais [34] dataset 
containing 81 software projects from a 
Canadian company, and the dataset 
evaluated in Carvalho’s work [11], 
comprising 231 software projects. For both 
datasets, the data were divided into training 
and testing sets in a 67% to 33% proportion, 

respectively. Inputs were normalized to the 
interval [0.15, 0.85], and data were 
randomly assigned to training and testing 
sets to ensure unbiased results. 

While many projects traditionally use the 

Mean Magnitude of Relative Error (MMRE) 
to assess forecasting method accuracy in 
estimating software project effort, we 
adopted alternative metrics such as Mean 
Absolute Error (MAE), Mean Squared Error 
(MSE), and Root Mean Squared Error 
(RMSE) to evaluate the ELM model, 

following recommendations from Shepperd 
and MacDonell [47]. 

In the Desharnais [34] dataset, we conducted 
experiments comparing the ELM technique 

with other techniques in the literature, 
including Linear Regression (LR), Support 
Vector Machine (SVM), K-Nearest 
Neighbor (KNN), and Multilayer Perceptron 
(MLP). Similarly, in the dataset evaluated by 
Carvalho’s work [11], experiments were 
conducted, comparing our model with the 
author’s model and adjusting parameters to 
achieve better results. 

A significant contribution of this study is the 

comparison of the applied ELM model with 
literature models used for predicting 
software development effort estimates, 

leading to reduced error estimate rates and 
aiding project managers in improving effort 
estimate forecasts during the project 
lifecycle. Additionally, we used Pearson’s 
correlation coefficient during the data 
preparation process to identify variables 
with high correlation, resulting in the 
selection of potential variables for the 
applied effort estimation model and 
achieving better results compared to the 
literature. 

In conclusion, accurate and reliable 

estimation of the effort required to complete 
a project is crucial in Software Engineering. 
Employing machine learning techniques 
increases the project's chances of success 
while reducing time and costs. For future 
work, we propose using an optimization 
method, such as Particle Swarm 
Optimization (PSO), to optimize model 
parameters for estimating software 
development effort. 
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