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ABSTRACT 

Providing an accurate rainfall estimate at 

individual points is a challenging problem in 

order to mitigate risks derived from severe 

rainfall events, such as floods and landslides. 

Dense networks of sensors, named rain 

gauges (RGs), are typically used to obtain 

direct measurements of precipitation 

intensity in these points. These measurements 

are usually interpolated by using spatial 

interpolation methods for estimating the 

precipitation field over the entire area of 

interest. However, these methods are 

computationally expensive, and to improve 

the estimation  of the variable of interest in 

unknown points, it is necessary to integrate 

further information. To overcome these 

issues, this work proposes a machine 

learning-based methodology that exploits a 

classifier based on ensemble methods for 

rainfall estimation and is able to integrate 

information from different remote sensing 

measurements. The proposed approach 

supplies an accurate estimate of the rainfall 

where RGs are not available, permits the 

integration of heterogeneous data sources 

exploiting both the high quantitative 

precision of RGs and the spatial pattern 

recognition ensured by radars and satellites, 

and is computationally less expensive than 

the interpolation methods. Experimental 

results, conducted on real data concerning an 

Italian region, Calabria, show a significant 

improvement in comparison with Kriging 

with external drift (KED), a well-recognized 

method in the field of rainfall estimation, 

both in terms of the probability of detection 

(0.58 versus 0.48) and mean-square error 

(0.11 versus 0.15). 

 

1.INTRODUCTION 

Protecting against flood dangers, 

managing river basins, and simulating 

erosion are all uses for hydrological impact 

modeling that rely on accurate rainfall 

estimates. In order to achieve this goal, rain 

gauges (RGs) are used to directly monitor the 

length and intensity of precipitations at 

specific locations.  
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We employ interpolation algorithms that are 

calculated using the data recorded by these 

RGs to estimate rainfall occurrences in 

regions that are not covered by them. There 

are a lot of different versions of these 

procedures that have been suggested in the 

literature. One of the most well-known and 

often utilized is the Kriging geo statistics 

method [1, 2]. 

When dealing with severe convective 

weather occurrences, it is crucial to have an 

accurate spatial reconstruction of the rainfall 

field. For example, sparse RGs may miss 

significant convective precipitation that 

forms in certain areas, and floods might occur 

even when no precipitation has fallen [3]. To 

get around this problem, there has been a 

recent uptick in the use of interpolation 

algorithms to combine different types of 

rainfall data in order to provide a more 

precise estimate [4].  

Ordinary Kriging (OK), which is 

widely used, has the drawback of only being 

able to utilize data from one source as input. 

To get around this, Kriging with external drift 

(KED) became a popular method [5, 6]. In 

fact, KED permits the interpolation of a 

random field and, in contrast to OK, may 

account for secondary data. The most 

significant issue is the high computational 

cost and extensive resource requirements of 

these approaches.  

Machine learning (ML) methods are 

the basis of an alternative strategy. Class 

imbalance, a significant number of missing 

characteristics, and the need to work 

gradually as new data become available are 

some of the difficult difficulties that must be 

overcome while employing these approaches. 

These problems are usually addressed by 

using ensemble techniques. As a 

classification approach, ensemble [7] 

combines several models trained with 

separate data sets or techniques to assign 

labels to previously unknown occurrences. 

The ensemble paradigm allows for the 

management of imbalanced classes and the 

reduction of error variance and bias, as 

compared to the situation of utilizing a single 

classification model. In particular, problems 

with rainfall estimates and strong weather 

event monitoring may be better handled using 

ensemble-based approaches. These 

techniques may also detect nonlinear 

relationships, such as those between sensor 

readings, cloud characteristics, and 

precipitation prediction. This paper 

introduces a machine learning (ML) 

approach to rainfall estimate using a 
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hierarchical probabilistic ensemble classifier 

(HPEC) to tackle the primary challenges in 

this area. In cases when RGs are unavailable, 

the suggested method allows for precise 

rainfall estimate by combining data from 

many sources (e.g., RGs, radars, and 

satellites) and using an under sampling 

methodology to deal with the imbalanced 

classes issue that is prevalent in such cases.  

For example, our method works well 

in practice when an official from the 

Department of Civil Protection (DCP) has to 

assess the likelihood of landslides and floods 

in a certain area due to heavy rainfall. Actual 

data pertaining to the southern Italian area of 

Calabria, supplied by the DCP, is used in the 

experimental assessment. Due to its 

complicated orography and striking climatic 

variations, Calabria serves as an excellent test 

site.  

 

Here is a summary of what we have 

contributed.  

1. Improved rainfall event estimations 

are produced by integrating three 

diverse data sources, namely RGs, 

radar, and Meteosat.  

2.  Several categorization approaches 

are evaluated using a real-world 

example involving the southern 

Italian area of Calabria, and a 

hierarchical probabilistic ensemble 

method is suggested.  

3. Various ML-based approaches are 

evaluated using KED, a popular 

interpolation method in the 

hydrological sector, and pre-trained 

only on historical data.  

Here is how the remainder of the 

article is structured. In Section II, we 

compare and contrast our method with others 

in the field and highlight the key points of 

difference. In Section III, we see the case 

study in action and learn about the primary 

data sources that went into developing the 

framework. The procedure for estimating the 

precipitation is detailed in Section IV. The 

findings and explanation of the experiments 

are presented in Section V. 

2.LITERATURE SURVEY 

Creating Predictive Models for the Indian 

Summer Monsoon Rainfall: How 

Topological Pattern Discovery and Support 

Vector Machines Fit In order to visualize the 

pattern of clustering behavior of yearly 
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rainfall due to changes in monthly rainfall for 

each year, this study applies a growing 

hierarchical self-organizing map (GHSOM) 

to a dataset of Indian rainfall data that spans 

142 years. The dataset is then used to group 

the yearly rainfall into smaller units. 

Additionally, it has been noted using support 

vector machine (SVM) that cluster creation 

has a beneficial effect on the rainfall forecast 

for the Indian summer monsoon. Statistical 

and graphical analysis have been used to 

display the results. 

A model for predicting rainfall using artificial 

neural networks is titled as such.  

Because it is so easy to train, the multilayer 

artificial neural network setup using the 

backpropagation algorithm is the most 

popular. Around eighty percent of all neural 

network development efforts use back-

propagation. The learning cycle of a back-

propagation algorithm consists of two stages: 

the first involves spreading the input patterns 

over the network, and the second involves 

adjusting the output by adjusting the 

network's weights. Character recognition, 

financial and weather prediction, face 

identification, and many more applications 

are all within the realm of possibility for the 

back-propagation-feedforward neural 

network.In order to put one of these 

applications into action, the study constructs 

testing and training data sets and determines 

the optimal number of hidden neurons for 

each layer. This study used artificial neural 

network models to examine the feasibility of 

forecasting the average rainfall across the 

Udupi district in Karnataka. Predictive 

models based on artificial neural networks 

have three layers of construction. In terms of 

hidden neurons, the models that are being 

compared vary.  

 

Title: A Rainfall Prediction Model for the 

Near Future Employing Convolutional 

Neural Networks with Multiple Tasks  

One of the most pressing issues in 

meteorological service is the forecast of 

precipitation, especially in the near future. 

Utilizing radar data or satellite photos to 

generate forecasts has been the primary 

emphasis of most current research. One other 

situation, however, involves the collection of 

a set of weather parameters from a number of 

different sensors installed at different 

observation locations. Even while site 

observations aren't always thorough, they can 

give useful information for weather 

prediction at surrounding sites, which hasn't 

been completely used in previous research. In 
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order to address this issue, we provide a 

model of a multi-task convolutional neural 

network that can automatically acquire 

features from time series recorded at 

observation sites and use the correlation 

between these sites to their advantage in 

weather prediction. So far as we are aware, 

this is the first effort to forecast the quantity 

of rainfall in the near future using multi-site 

characteristics and deep learning approaches. 

More specifically, we model the correlations 

across sites and construct the learning 

challenge as an end-to-end multi-site neural 

network model. This enables us to apply the 

gained information from one site to other 

linked sites. Results from a battery of tests 

demonstrate that the suggested model beats a 

variety of baseline models, including 

ECMWF, and that the learnt site correlations 

are quite informative.  

The Use of Deep Learning Models in Rainfall 

Prediction  

One of the most important ways that all living 

things get their freshwater supply is via 

rainfall. Data on the impact of different 

climatic factors on precipitation totals is 

supplied by rainfall prediction models. A 

data-driven model for a time series dataset 

may now be created thanks to Deep 

Learning's self-learning data labels. 

 In addition to making predictions about 

future occurrences based on previous events, 

it can identify anomalies or changes in time 

series data. This paper discusses the use of 

Deep Learning Architectures (LSTM and 

ConvNet) to obtain models of rainfall 

precipitation. It determines which 

architecture is better, with LSTM having an 

RMSE of 2.55 and ConvNet having an 

RMSE of 2.44. The authors assert that Deep 

Learning models will be efficient and 

effective for modellers working with any 

time series dataset. 

3. EXISTING SYSTEM 

Despite the fact that our study aims to 

construct a run-off analysis, it is comparable 

to previous work that uses a probabilistic 

ensemble and blends two data sources (rain 

gauges and radar) and is based on the 

ensemble paradigm (e.g., [12]). A single 

runoff hydrograph is then determined by 

applying a blending approach to the outputs 

of the runoff hydrologic models. The 

experimental findings prove that the 

hydrologic models are reliable, which may 

lead to better flood warning decision-making. 

In order to get a probabilistic geographical 

analysis of the daily precipitation using rain 

gauges, Frei and Isotta [13] outline a method. 
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In the end, the model is just a Bayesian 

predictive distribution that measures the 

uncertainty in the data sampled from the 

station network; it stands for an ensemble of 

potential fields that depend on the 

observations. The approach's capacity to 

provide accurate forecasts for a hydrological 

partitioning of the area is shown by an 

examination of an actual case study situated 

in the European Alps.  

Using just high-resolution gauges, the 

authors of [14] suggest an intriguing 

investigation into the daily precipitations for 

Australia and a number of South and East 

Asian locations. By averaging the results of 

the investigations performed on each source, 

the chosen model may be determined. When 

comparing the global accuracy of the model's 

individual components, the authors stress that 

the ensemble method is superior. Extra data 

from other precipitation products may also be 

captured by the suggested model. These final 

two studies demonstrate that ensemble 

approaches may guarantee excellent 

outcomes in a rainfall estimate scenario by 

using an ensemble strategy to provide more 

precise forecasts. In contrast to our work, 

however, the combination tactics that have 

been used are quite basic, and the integration 

of diverse data sources is completely 

disregarded. 

 In their study, Chiaravalloti et al. [16] used 

RG-only data and the combined RG-radar 

product as benchmarks to examine the 

performance of three newly created satellite-

based products: IMERG, SM2RASC, and an 

ingenious hybrid of the two. A better quality 

satellite rainfall product is obtained by 

combining IMERG with SM2RASC, and 

experiments show that IMERG performs well 

at temporal resolutions greater than 6 hours. 

The majority of alternative methods combine 

information from many sources, such as 

radars and satellite channels. Some of these 

rely on finding the right models to use the 

data to determine the parameters, which in 

turn take advantage of the relationship 

between clouds' optical and microphysical 

characteristics [17], [18]. Using statistical 

methods, further research [19–21] identify 

the models. Precipitation estimates derived 

from multispectral satellite data are given via 

Bayesian estimation in [22], whereas 

reference values are given by techniques that 

take radar data into consideration.  

In their approach, which incorporates RG 

observations and satellite data and uses an 

interpolation methodology based on the 
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Kriging method, Verdin et al. [23] also use 

Bayesian estimation to estimate the model 

parameters. While each of these methods has 

the potential to provide intriguing outcomes, 

their flexibility and efficacy are often 

compromised due to the sensitive process of 

parameters estimate for each individual 

model. More adaptable methods grounded on 

ML techniques have lately been explored 

because to the very nonlinear nature of the 

relationships between sensor data, cloud 

features, and rainfall estimates. For example, 

in [24], the authors use ANNs in conjunction 

with support vector machines to solve the 

challenge of identifying convective 

occurrences and adjacent wet regions. The 

data sets are derived from the optical 

channels of the multispectral sensor on board 

the Meteosat Second Generation (MSG) 

satellites. In contrast to our work, RG 

measures are used primarily as a reference 

and not during the algorithm's training phase. 

In their proposal for an SVM-based method 

of rainfall estimate, Sehad et al. [25] combine 

input data from multispectral channels on 

MSG and create two models, one for the day 

and one for the night. 

 Only random forests (RFs) and RGs are used 

to verify the strategy, and the results are 

compared to comparable ANN-based 

methods. In another ANN-based method, 

detailed in [26], radar data are used as a 

reference for recognizing pixels that are wet, 

with the input being an image matrix. Using 

data from multispectral channels on MSG 

satellites, Kuhnlein et al. [27] estimate 

rainfall rates using RFs, and they also use the 

ensemble paradigm. 

Disadvantages 

• The hierarchical probabilistic 

ensemble classifier (HPEC) is not 

used in the system to forecast rainfall. 

• The system uses ANNs, or artificial 

neural networks, to make predictions, 

however these predictions are 

inaccurate. 

3.1 PROPOSED SYSTEM 

For example, our method works well in 

practice when an official from the 

Department of Civil Protection (DCP) has to 

assess the likelihood of landslides and floods 

in a certain area due to heavy rainfall. The 

experimental assessment is carried out using 

actual data given by the DCP and pertaining 

to the area of Calabria in southern Italy. The 

complicated orography and considerable 

climatic fluctuation of Calabria make it an 

ideal testing site. The following is an 
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overview of our contributions. 

1) To improve the accuracy of rainfall event 

estimations, three different data sources are 

combined: RGs, radar, and Meteosat. 

2) A hierarchical probabilistic ensemble 

strategy is suggested after comparing several 

categorization algorithms on a real-life 

situation involving Calabria, a southern area 

in Italy.  

 

3) Using a popular interpolation approach in 

the hydrological area (KED), we evaluate 

several ML-based algorithms that have only 

been trained on historical data. 

 

The Benefits 

In order to analyze the raw data in the 

suggested system, it is preprocessed. To solve 

the issue of class imbalance, an 

undersampling method is used.  

By combining RG, satellite, and radar data, 

the suggested system was able to train and 

test using efficient ML classifiers and provide 

an impact. 

 

 

 

 

4. OUTPUT SCREENS 

Registration  

 

Login page 

 

Upload Data 
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Service_provider 

 

Accuracy 

 

  Line chart 

 

Pie chart 

 

5. CONCLUSION 

The spatial rainfall field estimating method 

based on ML has been developed. In 

situations when RGs are not available, this 

approach may estimate rainfall by combining 

data from diverse sources like radars and 

satellites, which also take use of the spatial 

pattern recognition provided by radars and 

satellites. An HPEC enables the model used 

to predict the intensity of rainfall events after 

a preprocessing phase, after which a random 

uniform under sampling technique is applied. 

In the first stage, RF classifiers are trained as 

the basis of this ensemble. The second stage 

involves using a probabilistic metal earner to 

combine the estimated probabilities given by 
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the base classifiers in accordance with a 

stacking schema. As compared to Kriging 

with external drift, a widely used and well-

known approach in rainfall estimate, 

experimental findings performed on actual 

data given by the Department of Civil 

Protection demonstrate substantial 

improvements. The ensemble approach 

stands out for its superior ability to identify 

rainfall occurrences. The HPEC-obtained 

POD value of 0.58 and the MSE value of 0.11 

are statistically superior than the KED-

obtained values of 0.48 and0.15, 

respectively. When it comes to the latter two 

classes, which stand for strong rainfall 

events, HPEC is computationally more 

efficient than the Kriging approach, but the 

difference between the two is not statistically 

significant (based on the F-measure).  

 

Because the Kriging method's complexity is 

cubic in the number of samples [51], it 

becomes computationally difficult to 

examine a large number of points, making the 

operation expensive from a computational 

standpoint. The ML algorithms (RF included) 

are quite sophisticated, however. One further 

advantage is that ensemble techniques may 

be easily parallelized and scaled up. We 

conclude that our technique offers significant 

benefits in this domain. 

Further, it is clear that all data sources 

contribute to the technique's strong 

performance when the impact of integration 

of the diverse data sources is analyzed. On all 

metrics, the algorithm's performance drops 

significantly once RG data is removed. In 

situations when one of the other two forms of 

data is removed, the deterioration is not as 

noticeable. However, the MSE is at its lowest 

(0.11) when all data are used, proving that all 

data sources must be used for optimal 

outcomes.  

We want to evaluate the technique on a 

longer time period in future work to account 

for impacts caused by annual and seasonal 

variability, and we are also thinking about 

ways to gradually develop the flexible 

ensemble model using the additional data. 

Additionally, we want to assess the 

algorithm's performance in identifying 

locally concentrated heavy precipitation 

events, using time series analysis to dissect 

the distinct contributions of the radar and 

Meteosat characteristics 
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