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          ABSTRACT 
 

Urban water quality is of great importance 

to our daily lives. Prediction of urban water 

quality help control water pollution and 

protect human health. However, predicting 

the urban water quality is a challenging task 

since the water quality varies in urban 

spaces non-linearly and depends on 

multiple factors, such as meteorology, 

water usage patterns, and land uses. In this 

work, we forecast the water quality of a 

station over the next few hours from a data-

driven perspective, using the water quality 

data and water hydraulic data reported by 

existing monitor stations and a variety of 

data sources we observed in the city, such 

as meteorology, pipe networks, structure of 

road networks, and point of interests 

(POIs). First, we identify the influential 

factors that affect the urban water quality 

via extensive experiments. Second, we 

present a multi-task multi-view learning 

method to fuse those multiple datasets from 

different domains into an unified learning 

model. We evaluate our method with real-

world datasets, and the extensive 

experiments verify the advantages of our 

method over other baselines and 

demonstrate the effectiveness of our 

approach. 

1.INTRODUCTION 

Urban water is a vital resource that affects 

various aspects of human, health and urban 

lives. People living in major cities are 

increasingly concerned about the urban 

water quality, calling for technology that 

can monitor and predict the water quality in 

real time throughout the city. Urban water 

quality, which serves as “a powerful 

environmental determinant” and “a 

foundation for the prevention and control of 

waterborne diseases” [1], refers to the 

physical, chemical and biological 

characteristics of a water body, and several 



              ISSN2321-2152 

            www.ijmece .com 

          Vol 12, Issue 2, 2024 

    
  

 

 

 

1620 

 

chemical indexes (such as residual chlorine, 

turbidity and pH) can be used as effective 

measurements for the water quality in 

current urban water distribution systems 

[2]. 

With the increasing demand for water 

quality information, several water quality 

monitoring stations have been deployed 

throughout the city’s water distribution 

system to provide the real-time water 

quality reports in a city. Figure 1 illustrates 

the water quality monitor stations that have 

been deployed in Shenzhen, China. Besides 

water quality monitoring, predicting the 

urban water quality plays an essential role 

in many urban aquatic projects, such as 

informing waterworks’ decision making 

(e.g., pre-adjustment of chlorine from the 

waterworks), affecting governments’ 

policy making (e.g., issuing pollution alerts 

or performing a pollution control), and 

providing maintenance suggestions (e.g., 

suggestions for replacements of certain 

pipelines). 

Predicting urban water quality, however, is 

very challenging due to the following 

reasons. First, urban water quality varies by 

locations non-linearly and depends on 

multiple factors, such as meteorology, 

water usage patterns, land use, and urban 

structures. As depicted in Figure 1, the 

water quality indexes (RC) reported by the 

three stations demonstrate different 

patterns. Exiting hydraulic model-based 

approaches try to model water quality from 

physical and chemical perspective, but such 

hydraulic model can hardly capture all of 

those complex factors. Moreover, the 

parameters I  model are hard to get, which 

make  it difficult to extend to other water 

distribution systems. Second, as all the 

stations are connected through the pipeline 

system, the water quality among different 

stations are mutually correlated by several 

complex factors, such as attributes in pipe 

networks and distribution of POIs. 

Traditional hydraulic model-based 

approaches build hydraulic model for each 

station and ignore their spatial correlations, 

and thus their performance is far from 

satisfactory. Hence, besides identifying the 

influential factors, how to efficiently 

characterize and incorporate such 

relatedness poses another challenge. 

 

Fortunately, in the era of big data [3] [4] [5], 

unprecedented data in urban areas (e.g., 

meteorology, POIs, and road networks) can 

provide complementary information to help 

predict the urban water quality. For 

example, temperature can be an indicator of 

water quality, with higher temperature 

indicating better water quality. The possible 

reason is that the water consumption tends 

to grow when temperature is high since 

most people may choose to take a shower, 
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and the increased water consumption is one 

major cause that prevents the water 

quality’s deterioration in the distribution 

systems. 

 

To benefit from the unprecedented data in 

urban areas, in this  paper, we predict the 

water quality of a station through a data-

driven perspective using a variety of data 

sets, including water quality data, hydraulic 

data, meteorology data, pipe networks data, 

road networks data, and POIs. First, we 

perform extensive experiments and data 

analytics between the water quality and 

multiple potential factors, and identify the 

most influential ones that have an effect on 

the urban water quality. Second, we present 

a novel spatio-temporal multi-task multi-

view learning (stMTMV) framework to 

fuse the heterogeneous data from multiple 

domains and jointly capture each station’s 

local information as well as their global 

information into an unified learning model 

[6]. 

We summarize the contributions as follows: 

_ Data-driven Perspective: We present a 

novel data-driven approach to co-predict 

the future water quality among different 

stations with data from multiple domains. 

Additionally, the approach is not restricted 

to urban water quality prediction, but also 

can be applied to other multi-locations 

based coprediction problem in many other 

urban applications. 

_ Influential Factor Identification: We 

identify spatially-related (such as POIs, 

pipe networks, and road networks) and 

temporally-related features (e.g., time of 

day, meteorology and water hydraulics), 

contributing to not only our application but 

also the general problem of water quality 

prediction. 

_ Unified Learning Model: We present a 

novel spatio-temporal multi-view multi-

task learning framework (stMTMV) to 

integrate multiple sources of spatio-

temporal urban data, which provides a 

general framework of combining 

heterogeneous spatio-temporal properties 

for prediction, and can also be applied to 

other spatio-temporal based applications. 

_ Real evaluation: We evaluate our method 

by extensive experiments that use real-

world datasets in Shenzhen, China. The 

results demonstrate the advantages of our 

method beyond other baselines, such as 

ARMA, Kalman filter, and ANN, and 

reveal interesting discoveries that can bring 

social good to urban life. 

 

The rest of this paper is organized as 

follows: Section 2 overviews the 

framework of our method. Section 3 and 4 

analyze the correlations between multi-

sources of urban data and the water quality. 
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Section 5 introduces the multi-task multi-

view learning method for urban water 

quality prediction, and Section 6 presents 

evaluations and visualizations. Section 7 

summarizes the related work, followed by 

the conclusion in the last section. 

 

As an extension of our previous work [6], 

this journal version claims following 

contributions: First, we focused on the data 

driven perspective. Specifically, we 

included the insight of our methodology as 

well as the correlation analysis between 

different data with the urban water quality. 

The detailed correlation analysis is shown 

in Section 3 and 4. Second, we refined the 

task relationship computation in our 

STMTMV model by figuring out the best 

configuration over various pipe attributes, 

which is achieved through the data 

correlation analysis in Section 5.4.1. Third, 

we conducted more comprehensive 

experiments to validate our system. For 

instance, we added another two popular 

algorithms (Kalman, ANN) as the time 

series prediction baselines in Section 6.3. In 

addition, we compared the performance of 

our approach with other baselines over each 

individual station in Section 6.6. 

                                    

2.LITERATURE SURVEY 

The literature on predicting urban water 

quality with ubiquitous data reflects a 

growing recognition of the potential of 

data-driven approaches to address 

challenges in water quality monitoring 

and management. One key aspect 

highlighted in the literature is the role of 

sensor networks and IoT devices in 

collecting real-time data at high spatial 

and temporal resolutions. These 

technologies enable continuous 

monitoring of water bodies, providing 

insights into dynamic changes in water 

quality parameters and facilitating early 

detection of pollution events or 

anomalies. 

Remote sensing imagery, including 

satellite and aerial data, is another 

valuable source of information for 

assessing water quality on a larger scale. 

Studies have explored the use of remote 

sensing techniques to estimate water 

quality indicators such as chlorophyll-a 

concentration, turbidity, and water 

clarity, thereby enabling the monitoring 

of water bodies over extensive 

geographic areas. 

Moreover, the integration of social 

media data and citizen science initiatives 

has emerged as a novel approach to 

supplement traditional monitoring 

efforts. By harnessing user-generated 

content and crowdsourced data, 

researchers can gather valuable 

information on water-related activities, 
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pollution incidents, and public 

perceptions of water quality, 

contributing to more comprehensive and 

participatory monitoring systems. 

In terms of predictive modeling, 

machine learning algorithms have 

demonstrated promising results in 

predicting water quality parameters 

based on diverse datasets. These models 

can capture complex relationships 

between environmental variables and 

water quality indicators, allowing for 

accurate predictions and early warning 

systems to support decision-making 

processes. 

Despite these advancements, challenges 

remain, including issues related to data 

quality, interoperability, and scalability. 

 

Addressing these challenges requires 

interdisciplinary collaborations among 

researchers, policymakers, and 

stakeholders to develop standardized 

data collection protocols, enhance data 

sharing mechanisms, and improve 

model validation techniques. 

 

 3.EXISTING  SYSTEM 

 

Several studies in the environmental 

science have been tried to analyze the water 

quality problems via data-driven based 

approaches, and those studies covers a 

range of topics, from the physical process 

analysis in the river basin, to the analysis of 

concurrent input and output time series [64] 

[65]. The approaches  adopted in these 

studies include instance-based learning 

models (e.g., kNN) as well as neural 

network models (e.g., ANN). In general, 

those data-driven approaches in the 

environmental science can fall into the 

following three major categories: Instance-

based Learning models (IBL), Artificial 

Neural Network models (ANN) and 

Support Vector Machine models (SVM). 

 

Instance-based learning models (IBL) is a 

family of learning algorithms that model a 

decision problem with instances or  

examples of training data that are deemed 

important to test model [66]. As a typical 

example of IBL, k-Nearest Neighbors 

(k-NN) is widely used due to its simplicity 

and incredibly good performance in 

practice. 

 

For example, the work introduced by 

Karlsson et al. [67] addressed the classical 

rainfall-runoff forecasting problem by k-

NN algorithm, and demonstrated promising 

results. Toth et al. [68] used k-NN to predict 

the rainfall depths from the history data, 

and showed the persistent outperformance 

of k-NN over other time series prediction 

methods. 
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As another example, Ostfeld et al. [69] 

developed a hybrid genetic k-Nearest 

Neighbor algorithm to calibrate the two-

dimensional surface quantity and water 

quality model. Artificial Neural Network 

(ANN) is a network inspired by biological 

neural networks (in particular the human 

brain), which consists of multiple layers of 

nodes (neurons) in a directed graph with 

each layer fully connected to the next one 

[65]. Neural networks have been widely 

employed to solve a wide variety of tasks, 

and can acheive good results. For instance, 

Moradkhani et al. [70] proposed an hourly 

streamflow forecasting method based on a 

radial-basis function (RBF) network and 

demonstrated its advantages over other 

numerical prediction methods. Also, the 

work introduced by Kalin [44] predicted the 

water quality indexes in watersheds through 

ANN. 

Support Vector Machines (SVMs) are 

typical supervised learning models that 

analyze data used for classification and 

regression [71]. 

In aquatic studies, it was also extended to 

solving prediction problems [64]. For 

instance, Liong et al. [72] addressed the 

issue of flood forecasting using Support 

Vector Regression (SVR) which is an 

extension of SVM. Another work by Xiang 

et al. [73] utilized a LS-SVM model to deal 

with the water quality prediction problem in 

Liuxi River in Guangzhou. 

However, none of these approaches is 

applied into urban scenarios, which is quite 

different from our applications. Moreover, 

those existing approaches process the data 

from a single source, and can hardly 

integrate the data from different sources. 

Thus, their applications in the urban 

scenarios are restricted. 

Disadvantages 

❖ The system is implemented only Multi-task 

Multi-view Learning Approaches. 

❖ Instance-based learning models (IBL) is a 

family of learning algorithms that model a 

decision problem with instances or 

examples of training data that are deemed 

important to the model. 

 

4.PROPOSED SYSTEM 

_ Data-driven Perspective: We present a 

novel data-driven approach to co-predict 

the future water quality among different 

stations with data from multiple domains. 

Additionally, the approach is not restricted 

to urban water quality prediction, but also 

can be applied to other multi-locations 

based coprediction problem in many other 

urban applications. 

_ Influential Factor Identification: We 

identify spatially-related (such as POIs, 

pipe networks, and road networks) and 

temporally-related features (e.g., time of 
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day, meteorology and water hydraulics), 

contributing to not only our application but 

also the general problem of water quality 

prediction._ Unified Learning Model: We 

present a novel spatio-temporal multi-view 

multi-task learning framework (stMTMV) 

to integrate multiple sources of spatio-

temporal urban data, which provides a 

general framework of combining 

heterogeneous spatio-temporal properties 

for prediction, and can also be applied to 

other spatio-temporal based applications. 

_ Real evaluation: We evaluate our method 

by extensive experiments that use real-

world datasets in Shenzhen, China. The 

results demonstrate the advantages of our 

method beyond other baselines, such as 

ARMA, Kalman filter, and ANN, and 

reveal interesting discoveries that can bring 

social good to urban life. 

Advantages 

1) Water quality data: We collect water 

quality data every five minutes from 15 

water quality monitoring stations in 

Shenzhen City. It comprises residual 

chlorine (RC), turbidity (TU) and pH. In 

this paper, we only use RC as the indexfor 

water quality, since RC is the most 

important and effective measurement for 

water quality in current urban water 

distribution system. 

2) Hydraulic data: Hydraulic data consists 

of flow and pressure, which are collected 

every five minutes from 13 flow sites and 

14 pressure sites, respectively. 

                                 

5.ARCHITECTURE: 

System Architecture mainly consist s of 

2 modules and database to store all the 

data .Those are: 

• Remote User 

• Service provider 

 

The Remote User module can perform 

the following operation: Register and 

login, view your profile, Predict 

Recommendation Type 

The Service provider module can 

perform the following operations: 

Login, Browse and Train &Test data 

sets, View Trained And tested Accuracy 

in Bar Charts, view Trained and Tested 

Accuracy Results, View Predicted 

Water Quality  Type Ratio, Download 

Trained data sets, view Water Quality 

ratio results. 
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6.MODULES 

 
Service Provider: 

 
In this module, the Service Provider has to 

login by using valid user name and 

password. After login successful he can do 

some operations such as 

Login, Train and Test Data Sets, View 

Trained and Tested Accuracy in Bar Chart, 

View Trained and Tested Accuracy 

Results, View Predicted Water Quality 

Type, Find Water Quality Prediction Ratio, 

Download Trained Data Sets, View Water 

Quality Prediction Ratio Results, View All 

Remote Users. 

 

View and Authorize Users: 

In this module, the admin can view the list 

of users who all registered. In this, the 

admin can view the user’s details such as, 

user name, email, address and admin 

authorizes the users. 

Remote User: 

 
In this module, there are n numbers of users 

are present. User should register before 

doing any operations. Once user registers, 

their details will be stored to the database.  

After registration successful, he has to login 

by using authorized user name and 

password. Once Login is successful user 

will do some operations like  REGISTER 

AND LOGIN, PREDICT WATER 

QUALITY TYPE, VIEW YOUR 

PROFILE. 

7.OUTPUT SCREENS: 

Login Screen: 

 

 

Register Screen: 

 



              ISSN2321-2152 

            www.ijmece .com 

          Vol 12, Issue 2, 2024 

    
  

 

 

 

1627 

 

 

Prediction Screen: 

 

 

Admin Login: 

 

Train & Test Data Screen: 
 

 

 

Accuracy Bar Chart Screen: 
 

 

 

View Profile Screen: 

 

8.CONCLUSION: 

 

This paper presents a novel data-driven 

approach to forecast the water quality of a 

station by fusing multiple sources of urban 

data. We evaluate our approach based on 

Shenzhen’s water quality and various urban 

data. The experimental results demonstrate 

the effectiveness and efficiency of our 

approach. Specifically, our approach 

outperforms the traditional RC decay model 

[2] and other classical time series predictive 

models (ARMA, Kalman) in terms of 

RMSE metric. Meanwhile, as our approach 

consists of two components, each of the 

components demonstrates its effectiveness 

through extensive experiments and 

analysis. In particular, the first component 

is the influential factors identification, 

which explores the factors that affect the 

urban water quality via extensive 

experiments and analysis in Section 3 and 

4. The second one is a spatiotemporal 

multi-view multi-task learning (STMTMV) 

framework that consists of multi-view 

learning and multi-task learning. The 

experiments have shown that STMTMV 

has a predictive accuracy of around 85% for 
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forecasting next 1-4 hours, which 

outperforms the single-task methods (LR) 

by approximately 11% and the single-view 

methods (t-view and s-view) by 

approximately 11% and 12%, respectively. 

The code has been released at: 

https://www.microsoft.com/en-

us/research/publication/urbanwater- 

quality-prediction-based-multi-task-multi-

view-learning-2/ In future, we plan to deal 

with the water quality inference problems 

in the urban water distribution systems 

through a limited number of water quality 

monitor stations. 
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