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Abstract: 

An equation is proposed to unify the yield surface 

of granular materials by incorporating the fabric 

and its evolution. In microlevel analysis by 

employing a Fourier series that was developed to 

model fabric, it is directly included in the strength 

of granular materials. Inherent anisotropy is 

defined as a noncoaxiality between deposition 

angle and principal compressive stress. 

Stressinduced anisotropy is defined by the degree 

of anisotropy 𝛼 and the major direction of the 

contact normals. The difference between samples 

which have the same density (or void ratio) but 

different bedding angles is attributed to this 

equation. The validity of the formulation is verified 

by comparison with experimental data. 

Introduction 

 There are numerous experimental observations 

showing that the shape of the failure surface for 

soils is influenced by the microstructural 

arrangement (or fabric) (e.g., [1–3]). It has long 

been known that the failure condition is influenced 

by the microstructural arrangement of the 

constituent particles. Several expressions for failure 

criteria have been proposed to include the effect of 

fabric and its evolution. Baker and Desai [4] 

proposed the so-called joint isotropic invariants of 

stress and appropriate anisotropic tensorial entities. 

Pastor [5], by using this method, proposed a 

constitutive model to account for fabric anisotropy. 

Pietruszczak and Mroz [6] related inherent 

anisotropy to the microstructural arrangement 

within the representative volume of material. They 

used a second-order tensor whose eigenvectors 

specify the orientation of the axes of the material 

symmetry. The failure criteria proposed by 

Pietruszczak and Mroz [6] were formulated in 

terms of the stress state and a microstructure tensor. 

Lade [3], by using the method proposed by 

Pietruszczak and Mroz [6], related the loading 

directions to the principal directions of the cross-

anisotropic microstructure arrangement of the 

particles. 

 In order to connect the microscopic character of 

the granular materials with overall macroscopic 

anisotropy, various quantities have been proposed; 

for example, Oda [1], Oda et al. [2], and Oda [7] 

defined the fabric of anisotropy by using the 

distribution of the unit contact normals. Mehrabadi 

et al. [8] defined another microstructural 

arrangement and connected these parameters to the 

overall stress and other mechanical characteristics 

of granular materials. Gao et al. [9] and Gao and 

Zhao [10] proposed a generalized anisotropic 

failure criterion through developing an isotropic 

failure criterion by introducing two variables to 

account for fabric anisotropy. The first one is the 

fabric anisotropy that was proposed by Oda and 

Nakayama [11] and the second one is the joint 

invariants of the deviatoric stress tensor and the 

deviatoric fabric tensor to characterize the relative 

orientation between stress direction and fabric 

anisotropy. They related the frictional coefficient 

𝜂𝑝 to the anisotropic variable 𝐴. Fu and Dafalias 

[12] showed that there is a difference between 

friction angle in the isotropic and anisotropic cases. 

In the isotropic case, friction angle would be a 

directionindependent constant, while in the 

anisotropic case, it is a function of the bedding 

angle with respect to the shear plane (in the Mohr-

Coulomb failure criterion). Fu and Dafalias [13]by 

using discrete element method (DEM) investigated 

the effect of fabric on the shear strength of granular 
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materials. They proposed an anisotropic shear 

failure criterion on the basis of noncoaxiality 

between the bedding plane orientation and the 

shear plane. The inherent fabric anisotropy was 

taken into account by considering the orientation of 

the bedding plane with respect to the principal 

stress axes. 

The specification of the condition at failure for 

anisotropic granular soils constitutes an important 

problem and numerous criteria have been proposed 

in the past. In this paper, we endeavor to 

incorporate the effect of inherent and induced 

anisotropy in the yield surface. The inherent and 

induced anisotropies are expressed as explicit 

functions of the bedding angle 𝛽 and the magnitude 

of anisotropy 𝛼 (in the distribution of contact 

normals). These two elements (inherent and 

induced anisotropy) are combined, and the Mohr-

Coulomb yield surface which is modified to 

account for the kinematic yield surface [14–16] is 

developed by including the fabric and its evolution. 

The equation of the yield surface that is proposed 

for granular soils is compared with the 

experimental results from Oda et al. [17]. It shows 

that the equation is able to capture the shearing 

behavior of soils with different bedding angles. 

Definition of Inherent Anisotropy 

 Inherent anisotropy is attributed to the deposition 

and orientation of the long axes of particles [1, 2, 

7]. Oda et al. [17] and Yoshimine et al. [18] 

showed that the drained and undrained response of 

sand and approaching the critical state failure are 

actually affected by the direction of the principal 

stress relative to the orientation of the soil sample. 

Pietruszczak and Mroz [6] included the effect of 

fabric by the following equation: 

 

where𝜏=𝐽1/2 2 is the second invariant of the stress 

tensor, 𝑝𝑜 = tr𝜎/3 is first invariant of the stress 

tensor, (𝜃) is Lode’s angle, and 𝜂 is a constant for 

isotropic materials and defined by the following 

equation for anisotropic materials: 

 

where𝜂𝑜 is the constant material parameter, Ω𝑖𝑗 

describes the bias in material microstructure spatial 

distribution, and 𝑙𝑖 and 𝑙𝑗 are the loading directions. 

Lade [3] by using these formulations proposed a 

failure criterion for anisotropic materials. Wan and 

Guo [19] accounted for the effect of inherent 

anisotropy in microlevel analysis by the ratio of 

projection of major-to-minor principal values of the 

fabric tensor along the direction of the principal 

stresses. Li and Dafalias [20, 21] incorporated this 

effect by the fabric tensor which was proposed by 

Oda and Nakayama [11]. These two methods used 

the same basic approach; they used the principal 

values of the fabric tensor in their formulations. 

However, micromechanical studies [2, 11] have 

shown that in the shearing process, the preferred 

orientation of the particles in a granular mass may 

undergo only small changes. Its valuemay well 

endure after the onset of the critical state; hence, 

the fabric anisotropy renders the locus of the 

critical state line. In this paper, cos 2(𝛽𝑖 − 𝛽∘) is 

used to model the effect of inherent anisotropy. 𝛽𝑖 

indicates the variation of the long axes of particles 

with respect to the major principal stress; 𝛽∘ is the 

angle of deposition with respect to the major 

principal stress. Hence,  

 

Definition of Stress-Induced Anisotropy  

With increasing shear loads, the contact normals 

tend to concentrate in the direction of the major 

compressive stress. Contacts are generated in the 

compressive direction and disrupted in the tensile 

direction. These disruption and generation of the 

contact normals are the main causes of the induced 

anisotropy in the granular materials [2]. In order to 

include the fabric evolution (or induced 

anisotropy), a function in which changes of the 

contact normals are included must be defined. Wan 

and Guo [19] used the following equation: 

 

where�̇� 𝑖𝑗 shows the evolution of fabric anisotropy, 

𝑥 is a constant, and 𝜂 ̇ 𝑖𝑗 is the ratio of the shear 

stress to the confining pressure, or 𝜂 = (𝑞/𝑝). 

Dafalias and Manzari [22] related the evolution of 
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fabric to the volumetric strain in the dilatancy 

equation. The evolution of fabric comes to play 

only after dilation. Based on DEM simulation 

presented by Fu and Dafalias [12], Li and Dafalias 

[23] developed an earlier model (yield surface) to 

account for fabric and its evolution in a new 

manner by considering the evolution of fabric 

tensor towards its critical value. 

 By using Fourier series, Rothenburg and Bathurst 

[24] showed that the contact normals distribution, 

(𝑛), can be presented as follows: 

 

where𝛼 is the magnitude of anisotropy and 𝜃𝑓 is 

the major principal direction of the fabric tensor. 

The variations of the parameters 𝛼 and 𝜃𝑓 represent 

the evolution of anisotropy in the granular mass. 

Experimental data shows that the shear strength of 

the granular material is a function of the magnitude 

of 𝛼 and 𝜃𝑓 [1, 17, 25]. The following equation is 

used to consider the effect of the induced 

anisotropy: 

 

As previously mentioned, the shear strength in the 

granular medium is a function of inherent and 

induced anisotropy. The equation can predict the 

difference between samples due to the fabric which 

is a combination of the inherent and induced 

anisotropy as follows [26]: 

 

Another parameter that must be added to the above 

relation is the rolling strength of the granular 

material. Oda et al. [25] and Bardet [27] showed 

the importance of the rolling strength of the 

particles, especially in a 2D case. This effect is 

incorporated in the following form [26]: 

 

where𝑚 is a constant that depends on the 

interparticle friction angle 𝜙𝜇 and the shape of the 

particles. When the samples with equal densities 

are subjected to the shear loads, the difference in 

the shear strength due to the fabric can be attributed 

to (8). 

Verification of (8) with the Experimental Data  

In order to show the ability of (8) to represent the 

effect of the fabric on the shear strength, the 

predictions are compared with the experimental 

tests presented by Konishi et al. [25]. They 

conducted an experimental study on biaxial 

deformation of two-dimensional assemblies of rod-

shaped photoelastic particle with oval cross 

section.The samples were confined laterally by a 

constant force of 0.45 kgf and then compressed 

vertically by incremental displacement. Two types 

of particle shapes were used; one was 𝑟1/𝑟2 = 1.1 

and the other was 𝑟1/𝑟2 = 1.4, in which 𝑟1 and 𝑟2 

are the major and minor axes of cross section 

respectively. To consider the influence of friction, 

two sets of experiments were performed on these 

two particle shapes, one with nonlubricated 

particles of average friction angle of 52∘ and the 

other with particles which had been lubricated with 

an average friction angle of 26∘ . The magnitude of 

the degree of anisotropy 𝛼 and the major direction 

of the fabric 𝜃𝑓 are calculated by the following 

equations: 

 

To show the ability of (8), the proportion of fabric 

with the shear strength variations is shown in 

Figure 1. The differences in the shear strength ratio 

at failure for different bedding angles are attributed 

to the differences in the developed anisotropic 
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parameters. In other words, the combination of 

anisotropic parameters (for inherent and induced 

anisotropy) is proportional to the shear strength. 

The variation of righthand side of (8) is 

proportional to the variation of shear strength ratio 

for different bedding angles. The right-hand side of 

(8) is shown by fabric anisotropy in Figure 1.The 

effect of bedding angle on stress ratio at failure for 

the different interparticle friction angle 𝜙𝜇 is also 

shown in Figure 1. 

Incorporation of the Fabric and Its Evolution in the 

Yield Surface 

Muir Wood et al. [14] proposed the kinematic 

version of the Mohr-Coulomb yield surface as 

follows: 

 

where𝑞 is the deviatoric stress and 𝜂𝑓𝑦 is the size 

of the yield surface. Muir Wood et al. [14] and 

Muir Wood [16] assumed that the soil is a 

distortional hardening material; hence, the current 

yield surface 𝜂𝑓𝑦 is a function of the plastic 

distortional strain  , and, hence, 

 

where𝜂𝑝 is a limit value of stress ratio which is 

equal to 𝑀 at the critical state, 𝜂𝑝 = 𝑀 = 𝑞/𝑝; 𝑐 is a 

soil constant.  

Wood et al. [14] and Gajo and Muir Wood [15] 

developed the above equation to include the effect 

of state parameter𝜓 = 𝑒−𝑒cr, in which 𝑒 is the void 

ratio and 𝑒cr is the magnitude of the void ratio on 

the critical-state line, as follows: 

 

where𝑘 is a constant. 

 Li and Dafalias [20] modified the effect of state 

parameter 𝜓 to account for a wide range of stress 

and void ratio as follows: 

 

In the previous section, the shear strength was 

shown to be a function of inherent and induced 

anisotropy (see (8)). Thus, the effect of inherent 

and induced fabric anisotropy for triaxial case can 

be expressed as follows: 

 

The magnitudes of 𝛼 and 𝜃𝑓 approach a constant 

value in large shear strain [26, 28, 29]. The 

parameter cos 2(𝛽𝑖 − 𝛽∘) is easily obtained by back 

calculation but as a rough estimation, its value is 

close to the magnitude of the bedding angle cos𝛿 

(for bedding angle 𝛿 between 15∘ and 45∘ ). 

Equation (10) can be shown in the following form 

for multiaxial direction (or in the general form): 

 

It is similar to the equation proposed by 

Pietruszczak and Mroz [6] and Lade [3] but in this 

formulation, another function is used for fabric and 

its evolution. 

Fabric Evolution  

The parameters 𝛼 and 𝜃𝑓 show the status of the 

fabric and its evolution. These parameters have a 

great influence on the behavior of the dilatancy 

equation. Shaverdi et al. [29] proposed an equation 

which can predict the magnitude of 𝛼 and 𝜃𝑓 in the 

presence of the noncoaxiality between stress and 

fabric. This equation is obtained from the 

microlevel analysis. To calculate the 𝛼 parameter, 

the magnitude of the shear to normal stress ratio on 

the spatially mobilized plane (SMP) must be 

determined. In the triaxial case, for example, 𝜏/𝑝 

may be obtained from the following equation [30]: 

The parameters 𝛼 and 𝜃𝑓 may be obtained from the 

following equations in the presence of 

noncoaxiality [29]: 
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where the dot over 𝜃 shows the variation.The most 

important parameter in the above equation is the 

interparticle mobilized 

 

 

 

 

Figure 2: Comparison between experimental data 

and simulation by using (16) for the confining 

pressure 0.5 kg/cm2 . 

Conclusion  

An equation was proposed to include the effect of 

inherent and induced anisotropy. This relation was 

obtained by combining the effect of inherent and 

induced anisotropy. Rolling resistance is also 

included in this equation. The differences between 

the samples due to inherent and induced anisotropy 

were well captured by applying (8). Verifying the 

experimental data shows that this equation can 
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predict the ratio of the shear strength at failure of 

granular materials in the presence of inherent 

anisotropy as good as possible. The effect of 

inherent anisotropy was incorporated by a single 

term cos 2(𝛽𝑖 − 𝛽∘). Induced anisotropy was also 

included by a simple term (1 + (1/2)cos 2(𝜃𝑓 − 

𝜃𝜎)) in which 𝛼 and 𝜃𝑓 can be easily calculated 

and obtained. The extended MohrCoulomb was 

developed to incorporate the effect of fabric  and its 

evolution. Verification with the experimental tests 

demonstrated the validity of this formulation. 
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