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ABSTRACT 

Examining the efficacy of meditation audio in reducing stress after academic exposure, 

this research also delves into the usage of wearable sensors for real-time stress 

monitoring. The MIST records physiological signals, including HRV, BVP, and EDA 

that are extracted from the IBI. Using Genetic Algorithms and Mutual Information, a 

hybrid classification strategy is implemented to reduce feature redundancy. The 

hyperparameters of the machine learning system are then fine-tuned using Bayesian 

optimisation. Findings show that when EDA, BVP, and HRV are combined, the GB 

algorithm performs better for 2-level and 3-level stress categorisation. On the other 

hand, findings from EDA and HRV alone are encouraging as well. Also, according to 

SHAP Explainable AI (XAI) research, the two most important characteristics for stress 

categorisation are HRV and EDA. The results provide credence to the idea that 

meditative music might help alleviate stress. These findings demonstrate the promise 

of wearable technology integrated with machine learning for the immediate 

identification and alleviation of academic stress. 
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I.INTRODUCTION 

A growing number of studies have shown 

that stress, especially in school settings, 

may have negative effects on children' 

emotional and physical health. Many 

medical issues, such as anxiety, 

depression, and heart disease, may 

develop as a result of chronic stress. 

Consequently, enhancing health and 

productivity necessitates early stress 

diagnosis and treatment. One potential 

answer for real-time stress monitoring is 

the use of wearable biosensors, which 

can collect physiological data and 

analyse it to identify stress reactions. 

Important physiological signals that are 

indicative of stress are captured by these 

biosensors. Stress classification methods 

may not be as accurate when using raw 

data from wearable devices due to the 

presence of noise and redundancy. To 

solve this problem, real-time stress 

detection may be achieved by processing 

and classifying the data using machine 

learning techniques. Furthermore, by 

determining which elements are most 

important for categorisation, Explainable 

AI (XAI) methods may make machine 

learning models more transparent and the 

results easier to understand for end users.  

Using feature selection approaches like 

Genetic Algorithms and Mutual 

Information, as well as machine learning 

techniques like Gradient Boosting, this 

research aims to optimise data from 

wearable biosensors for stress 

categorisation. Additionally, the study 

investigates the possibility of using 

Explainable AI, and more especially 

SHAP analysis, to learn more about the 

stress-related physiological signals. In 

order to provide a complete method for 

both monitoring and controlling stress in 

academic environments, this research 

also seeks to understand the effects of 

meditation audio on stress reduction. 

This project aims to provide better real-

time stress detection and management 

solutions by combining wearable 

electronics, machine learning, and XAI. 

 

II.METHODOLOGY 

 

A) System Architecture  

Figure 1 shows the process and 

architecture of the proposed system, 

which uses machine learning and 

Explainable AI (XAI) to optimise data 

from wearable biosensors for stress 

categorisation in real-time. A centralised 

server is the brains of this system, 

coordinating model training, data 

processing, and aggregation from several 

wearable devices that record 
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physiological signals including EDA, 

BVP, and HRV obtained from IBI. The 

MIST and similar stress-inducing 

activities record these signals from users 

so that stress levels may be monitored in 

real-time. 

 

Clients and servers are the two main parts 

of the system. Client devices, such 

biosensors worn by people, gather 

physiological data and preprocess it to 

find attributes that machine learning 

models can exploit. Afterwards, a 

centralised server receives and processes 

these characteristics, which include HRV, 

BVP, and EDA. For stress classification, 

the server compiles the data and using 

complex mL techniques including GB, 

SVM, and LR.  

Physiological data is utilised to 

categorise stress levels using SVM, LR, 

and GB. While Logistic Regression is 

used for probabilistic modelling of stress 

risk, Support Vector Machines are 

perfect for recognising complicated 

patterns in high-dimensional data. By 

merging many underperforming models 

into one strong one, the ensemble 

learning technique known as Gradient 

Boosting is able to increase accuracy. To 

reliably forecast stress levels in a variety 

of settings, these machine learning 

models are trained using data collected 

from several customers, in this case 

wearables.  

In order to get the most out of the 

machine learning models, the server 

employs Bayesian optimisation to tweak 

their hyperparameters. In addition, the 

server uses SHAP (Shapley Additive 

Explanations) and other Explainable AI 

approaches to make the model's 

predictions easier to understand. This 

increases the system's trustworthiness 

and openness by letting users and 

healthcare providers know what goes into 

stress forecasts.  

By storing all sensitive user data on the 

client device, data privacy is preserved 

throughout the process. In keeping with 

privacy and confidentiality rules, the 

server is only informed of processed 

insights and feature upgrades. To further 

guarantee the accuracy and robustness of 

the classification models, the system 

incorporates techniques to manage 

possible data preparation issues such 

unbalanced data, missing values, and 

outliers.  

Returning to the wearable devices, the 
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trained models are then used to classify 

stress in real-time. Users may get 

constant feedback on their stress levels 

and get suggestions for remedies like 

meditation or relaxation exercises based 

on data that's analysed in real-time.  

Finally, the suggested method improves 

stress categorisation using data collected 

from wearable biosensors by combining 

machine learning with Explainable AI. 

This system provides an efficient and 

scalable solution for stress management 

and mental health monitoring by 

integrating real-time physiological 

monitoring with powerful classification 

algorithms and guaranteeing 

interpretability with XAI. Both 

individual health and healthcare 

treatments as a whole stand to benefit 

greatly from the use of machine learning 

and wearable tech in this setting. 

B) Proposed Federated 

Learning-Based Model 

While protecting sensitive information, 

the Federated Learning (FL) architecture 

enables clients to train their models 

locally and communicate changes to the 

server. The federated architecture allows 

for the use of many machine learning 

algorithms for fraud detection, with each 

algorithm adding to the total model by 

updating the global model with local 

insights.  

To calculate the local update for Support 

Vector Machine (SVM), one must first 

choose the best separating hyperplane, 

which maximises the margin between 

valid and fraudulent transactions. Here is 

one way to depict the change to the FL 

setting for every client kkk:  

 

∇Lk(Wt) is the gradient of the local loss 

function at client k, η is the learning rate, 

and Wt represents the model parameters 

(support vectors and coefficients). We 

update the global model by adding 

together all the local modifications using 

a weighted total when every client sends 

their updates to the server.  

The goal of training a model for Logistic 

Regression is to determine the likelihood 

of a fraudulent transaction. At every 

client k, the update for the logistic 

regression parameters θ is: 

 

The parameter vector θt, the learning rate 

η, and the gradient of the loss function 

particular to client k, denoted as ∇Lk(θt), 

are all defined here. Following the 

aggregation of updates, the weighted 

total of all client changes is used to 

update the global model parameters.  

In Gradient Boosting, every client trains 

its own set of decision trees, with each 

tree learning from its predecessors and 

improving upon its mistakes. In this case, 
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the update rule is repeatedly modifying 

the tree predictions: 

 

In this context, fk,t(x) represents the 

present forecast for input x at iteration t, 

hk(x) stands for the recently learnt 

decision tree model for client k, and η 

signifies the learning rate. The server 

then uses the aggregated updates to 

improve the global model after training.  

Using a weighted average of the data 

points at each client, the server in the FL 

framework aggregates the local updates 

for each algorithm. For SVM, Logistic 

Regression, or Gradient Boosting, the 

global model Wt+1 is updated as: 

 

For all data points, nk is the value. This 

method guarantees that the global model 

may use the varied insights from different 

clients without compromising privacy. 

C) Dataset 

In order to forecast people's stress levels, 

this study makes use of a dataset of 

10,001 rows of data gathered from 

wearable biosensors, which capture a 

variety of demographic and physiological 

characteristics. User demographics, 

activity levels, and readings from various 

sensors are all part of the data set. These 

factors allow for a more precise 

categorisation of stress levels by 

providing a holistic perspective of the 

physiological states. Machine learning 

models are trained on this information 

and then utilise these characteristics to 

accurately forecast stress and track health 

issues. This dataset enables multi-

dimensional analysis of stress detection 

by incorporating data points such as heart 

rate, HRV, skin temperature, 

electrodermal activity (EDA), activity 

level, and demographic parameters like 

age and gender. 

 

 

HeartRate is a representation of the user's 

cardiac activity derived from the heart 

rate measurements (in beats per minute) 

recorded by the wearable biosensors.  

A person's stress levels, the stability of 

their autonomic nervous system, and 

general health may be revealed by 

measuring their heart rate variability, or 

HRV.  
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EDA is a measure of the activity of the 

sweat glands that rises while we're under 

stress. Changes in skin conductance, as 

measured by EDA readings, are 

associated with levels of emotional 

arousal.  

You may learn about your body's thermal 

reaction to stress by looking at your skin 

temperature readings, which might 

change depending on how much stress 

you're under.  

The user's activity level indicates their 

current state of physical activity, which 

might impact their physiological 

reactions. It measures their activity level 

and shows whether they are resting, 

active, or very active.  

Based on physiological data, stress is 

categorised as low, medium, or high, and 

it serves as the goal variable in the dataset 

that indicates the stress level.  

Because people's physiological reactions 

to stress might vary depending on their 

gender, the demographic characteristic 

"gender" can be useful for this kind of 

analysis.  

The user's age is a significant component 

in stress prediction since people's 

reactions to and ability to cope with stress 

might alter as they get older. 

 

D) Feature Selection 

By simplifying the data and zeroing 

down on the most important 

characteristics, feature selection is a 

crucial step in making machine learning 

models work as well as possible. 

Selecting the most important 

characteristics guarantees accurate 

predictions in this study, which uses data 

from wearable biosensors to assess stress 

levels. Statistical tests such as chi-square 

and ANOVA are used to evaluate the 

relevance of characteristics after 

correlation analysis has been used to find 

duplicate features. To further assess the 

significance of features, we use 

embedded approaches via decision tree-

based algorithms and wrapper methods 

like Recursive Feature Elimination 

(RFE). The correlation between 

characteristics and stress levels may be 

better understood with the use of mutual 

information. The dataset is fine-tuned for 

enhanced model performance after 

choosing essential characteristics 

including HeartRate, HRV, EDA, and 

ActivityLevel. This results in less 

overfitting and increased accuracy. 

III.CONCLUSION  

Using machine learning and explainable 

AI (XAI), this study shows how to 

optimise data from wearable biosensors 

for stress categorisation. Incorporating 
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sophisticated feature selection methods 

allows us to train the model with just the 

most relevant data, which improves 

accuracy while simplifying the process. 

Combining XAI with machine learning 

methods like Gradient Boosting not only 

improves stress classification 

performance, but also makes the results 

easier to grasp and analyse. The findings 

highlight the promise of wearable tech 

and AI for managing stress in real-time, 

which is particularly useful in 

professional and academic contexts. 

Further, this study demonstrates how 

explainable AI may improve 

personalised stress detection and 

management systems by making 

decision-making more transparent and 

trustworthy. 
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