

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

86

DESIGN AND IMPLEMENTATION OF HIGH SPEED 32-BIT MAC

(MULTIPLY ACCUMULATE) UNIT

Radhika Rayeekanti, D. Akshaya, K. Bhanurekha, P. kavya

 Associate Professor, Department of Electronics and Communication Engineering,

Bhoj Reddy Engineering college for women, Hyderabad, Telangana, India.

radhiece2022@gmail.com

1dashinolaakshaya231@gmail.com,2 kbhanurekha77@gmail.com ,3ponnurukavya3@gmail.com

Student, Department of Electronic and Communication Engineering, BhojReddy Engineering college for women,

Hyderabad, Telangana, India.

Abstract

This paper explores the design and implementation of a high-speed 32-bit MAC (Multiply

Accumulate) unit, optimized for digital signal processing (DSP) applications. The MAC unit

is a critical component in various computational tasks, particularly in machine learning,

image processing, and telecommunications, where performance and efficiency are

paramount. We detail the architecture of the MAC unit, focusing on parallel processing

techniques, pipelining and optimized data paths that enhance throughput and minimize

latency. The proposed design leverages modern semiconductor technologies to achieve high

clock rates while maintaining energy efficiency. We present simulation results demonstrating

significant performance improvements over traditional MAC implementations, highlighting

metrics such as throughput, power consumption, and area efficiency. Additionally, the MAC

unit's integration within a larger DSP system is discussed, illustrating its impact on overall

system performance. In today's smart and fast computing world, the designing of high speed

and low energy consumption based Digital Signal Processors (DSPs) is a realistic and ever

embryonic area of research. The multiplier, adder, accumulator are the fundamental

construction sub-units for MAC units. This paper has presented the implementation of novel

32-bit MAC unit consisting of Vedic Multiplier using Urdhva Tiryakbhyam sutra and efficient

adder circuit using Modified Weinberger adder technique. From comparative analysis, the

MAC unit designed was found to be proficient in terms of delay and energy consumed.

1. INTRODUCTION

The multiply-accumulate (MAC) unit is a

fundamental block for digital signal processing

(DSP) applications. Especially, in recent years,

the development of real-time edge applications

has become a design trend. Thus,there is a strong

demand for high-speed low-power MAC units.

A conventional MAC unit is composed of two

individual blocks: multiplier and an accumulator

(i.e., an accumulate adder). A multiplier usually

here has three steps. The first step is the partial

product generation (PPG) process. For example,

AND gates can be used to generate a partial

product matrix (PPM) for an unsigned

multiplication. The second step is the partial

product reduction (PPR) process. By using the

Dadda tree approach or the Wallace tree

approach, the PPM can be reduced to become

two rows. The third step is the final addition. An

adder (called the final adder) is used to perform

the summation of the final two rows.

http://www.ijmece.com/
mailto:radhiece2022@gmail.com
mailto:dashinolaakshaya231@gmail.com
mailto:kbhanurekha77@gmail.com
mailto:3ponnurukavya3@gmail.com

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

87

2. LITERATURE SURVEY

Approximate Adders for approximate

multiplication: Document The gap between

capabilities of CMOS technology scaling and

requirements of future application workloads is

increasing rapidly. There are several promising

design approaches that jointly can reduce this gap

significantly. Approximate computing is one of

them and in recent years, has attracted the

strongest attention of the scientific community.

Approximate computing exploits inherent error-

resilience of applications and features high-

performance energy-efficient software and

hardware implementations by trading off

computational quality (e.g., accuracy) for

computational efforts (e.g., performance and

energy). Over the decade, several research efforts

have explored approximate computing

throughout all the layers of computing stack,

however, most of the work at hardware level of

For an N-bit multiplier, a (2N-1)-bit adder is

required for the final addition. Various adder

architectures have been proposed for the trade-

offs among delay, area, and power. Furthermore,

various MAC unit models can be developed by

replacing the multiplier as well as the

accumulator (adder) with various architectures.

The arithmetic units are not only reduced in

complexity, but carries also taken that error value

is maintained low, helps in achieving better

accuracy, reduced logic complexity of

approximate arithmetic units consumes less

power and area. The proposed multipliers out

performs the existing multiplier designs in terms

of area, power, and error, and achieves better peak

signal to noise ratio (PSNR) values in image

processing application. Error distance (ED) can

be defined as the arithmetic distance between a

correct output and approximate output for a given

input. abstraction has been proposed on adders. In

[1], a comparative survey of state of-the-art

approximate adders is provided. And it also

provides comparison based on both conventional

design metrics as well as approximate computing

design metrics.

Compressors for Multiplication: Approximate

computing is an attractive paradigm for digital

processing at nanometric scales. Inexact

computing is particularly interesting for computer

arithmetic designs. The analysis and design of

two new approximate 4-2 compressors are

explained in for utilization in a multiplier.

These designs rely on different features of

compression, such that imprecision in

computation (as measured by the error rate and

the so-called normalized error distance) can meet

with respect to circuit-based figures of merit of a

design (number of transistors, delay and power

consumption). Four different schemes for

utilizing the proposed approximate specified

number of times. A number (multiplicand) is

added itself a number of times as specified by

another number (multiplier) to form a result

(product). Multipliers play an important role in

today’s digital signal processing and various

other applications. Multiplier design should offer

high speed, low power consumption.we propose

a low-power high-speed pipeline multiply-

accumulate (MAC) architecture. In a

conventional MAC, carry propagations of

additions (including additions in multiplications

and additions in accumulations) often lead to

large power consumption and large path delay. To

resolve this problem, we integrate a part of

additions into the partial product reduction (PPR)

process. In the proposed MAC architecture, the

addition and accumulation of higher significance

bits are not performed until the PPR process of

the next multiplication. To correctly deal with the

overflow in the PPR process, a small-size adder

is designed to accumulate the total number of

carries. Compared with previous works,

experimental results show that the proposed

MAC architecture can greatly reduce both power

consumption and circuit area under the same

timing constraint. The high-speed 32-bit Mac unit

was an essential stepping stone in the evolution of

Apple’s computing technology. This section

provides an overview of different methodologies

for classifying hyper-spectral images, as well as

brief explanations of the algorithms adopted by

the researcher.

3. TOOLS ANALYSIS
3.1 XILINX

The Integrated Software Environment (ISE™) is the

Xilinx® design software suite that allows you to take

your design from design entry through Xilinx

programming. The ISE Project Navigator manages

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

88

and processes your design through the following

steps in the ISE design flow.Design entry is the first

step in the ISE design flow. During design entry, you

create your source files based on your design

objectives. You can create your top-level design file

using a Hardware Description Language (HDL), such

as VHDL, Verilog, or ABEL, or using a schematic.

You can use multiple formats for the lower-level

source files in your design.After design entry and

optional simulation, you run synthesis. During this

step, VHDL, Verilog, or mixed language designs

become netlist files that are accepted as input to the

implementation step.

After synthesis, you run design implementation,

which converts the logical design into a physical file

format that can be downloaded to the selected target

device. From Project Navigator, you can run the

implementation process in one step, or you can run

each of the implementation processes separately.

Implementation processes vary depending on

whether you are targeting a Field Programmable Gate

Array (FPGA) or a Complex Programmable Logic

Device (CPLD).

Fig 3.1 Project Navigator

• Toolbar

• Sources window

• Processes window

• Workspace

• Transcript window

USING THE SOURCES WINDOW

The first step in implementing your design for a

Xilinx® FPGA or CPLD is to assemble the design

source files into a project. The Sources tab in the

Sources window shows the source files you create

and add to your project, as shown in the following

figure. For information on creating projects and

source files, see Creating a Project and Creating a

Source File.

Fig 3.2 Sources Window

The Design View ("Sources for") drop-down list at

the top of the Sources tab allows you to view only

those source files associated with the selected Design

View (for example, Synthesis/Implementation). For

details, see Using the Design Views

3.2 Verilog

Introduction

Verilog HDL is a Hardware Description Language

(HDL). A Hardware Description Language is a

language used to describe a digital system, for

example, a computer or a component of a computer.

One may describe a digital system at several levels.

For example, an HDL might describe the layout of the

wires, resistors and transistors on an Integrated

Circuit (IC) chip, i.e., the switch level or, it might

describe the logical gates and flip flops in a digital

system, i.e., the gate level. An even higher level

describes the registers and the transfers of vectors of

information between registers. This is called the

Register Transfer Level (RTL). Verilog supports all

of these levels. However, this handout focuses on

only the portions of Verilog which support the RTL

level.

Verilog is one of the two major Hardware Description

Languages (HDL) used by hardware designers in

industry and academia. VHDL is the other one. The

industry is currently split on which is better. Many

feel that Verilog is easier to learn and use than VHDL.

As one hardware designer puts it, "I hope the

competition uses VHDL." VHDL was made an IEEE

Standard in 1987, while Verilog is still in the IEEE

standardization process.

http://www.ijmece.com/
file:///C:/Xilinx92i/doc/usenglish/help/iseguide/html/ise_p_using_the_design_views.htm

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 1, 2025

89

Verilog Code Structure

The Verilog language describes a digital system as a

set of modules. Each of these modules has an

interface to other modules to describe how they are

interconnected. Usually we place one module per file

but that is not a requirement. The modules may run

concurrently, but usually we have one top level

module which specifies a closed system containing

both test data and hardware models. The top level

module invokes instances of other modules. Modules

can represent bits of hardware ranging from simple

gates to complete systems, e. g., a microprocessor.

Modules can either be specified behaviorally or

structurally (or a combination of the two). A

behavioral specification defines the behavior of a

digital system (module) using traditional

programming language constructs, e. g., ifs, and

assignment statements. A structural specification

expresses the behavior of a digital system (module)

as a hierarchical interconnection of sub modules. At

the bottom of the hierarchy the components must be

primitives or specified behaviorally. Verilog

primitives include gates, e. g., nand, as well as pass

transistors (switches). The <module name> is an

identifier that uniquely names the module. The <port

list> is a list of input, The <declares> section

specifies data objects as registers, memories and

wires as wells as procedural constructs such as

functions and tasks. The <module items> may be

initial constructs, always constructs, continuous

assignments or instances of modules.

4. CONCLUSION

Computer hardware has grown in power at an amazing

pace ever since. The most important computational

resources is energy which is deeply linked to the

reversibility of the computation. The primary

objective of this project was to gain insight into the

Reversible Computation and its use for making

devices energy efficient for long life. Multiplier is a

basic arithmetic cell in computer arithmetic units and

it is supposed to be the most power consuming unit

when higher order multiplication is to be performed.

In this work, looking at advantages of reversibility, we

synthesized a parity preserving reversible multiplier

circuit with the help of existing fault tolerant Fredkin,

F2G and IG gate. We proposed this project which

presents low-power high-speed two-stage pipeline

MAC architecture for real-time DSP applications. Our

basic idea is to integrate a part of additions (including

a part of the final addition in the multiplication and a

part of the addition in the accumulation) into the PPR

process. As a result, critical path delays and power

dissipations caused bycarry propagations can be

reduced. To correctly deal with the overflow during the

PPR process, an α-bit accumulator is used to count the

total number of carries. Experimental results

consistently show that the proposed approach input and

output ports which are used to connect to other modules.

works well in practice. The proposed MAC architecture

is applicable to both the design of an unsigned MAC

unit and the design of a signed MAC unit. Note that the

only differences between the unsigned MAC unit and

the signed MAC unit are the PPM structure and the α-

bit addition mechanism. Moreover, the proposed MAC

architecture is also applicable to the systolic array (for

performing the matrix multiplication). Implementation

data show that, compared with the systolic array based

on the conventional PE (i.e., the conventional MAC

architecture), the systolic array based on the proposed

PE (i.e., the proposed MAC architecture) can greatly

reduce both circuit area and power consumption under

the same timing constraint. SCS-based multipliers

maintain the input and Output operands of the

Montgomery MM in the carrysave format to escape

from the format conversion, leading to fewer clock

cycles but smaller area than FCS-based multiplier. In

the existed architecture disadvantages are carry

propagation delay and extra clock cycles. To overcome

the disadvantages we go for PASTA adder.

5. REFERENCES

V. Gupta, D. Mohapatra, A. Raghunathan, and K.
Roy, “Low-power digitalsignal processing using
approximate adders,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–
137,Jan. 2013
.E. J. King and E. E. Swartzlander, Jr., “Data-
dependent truncationscheme for parallel
multipliers,” in Proc. 31st Asilomar Conf.
Signals,Circuits Syst., Nov. 1998, pp. 1178–1182.
K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi,
“Design oflow-error fixed-width modified booth
mutiplier,” IEEE Trans. VeryLarge Scale Integr. (VLSI)
Syst., vol. 12, no. 5, pp. 522–531,May 2004.
H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C.
Lucas, “Bio-inspired imprecise computational
blocks for efficient VLSI implementation of soft-
computing applications,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 57, no. 4, pp. 850–862, Apr. 2010.

http://www.ijmece.com/

