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Abstract—Single image dehazing is a challenging ill-posed 
problem which estimates latent haze-free images from observed 
hazy images. Some existing deep learning based methods are 
devoted to improving the model performance via increasing 41 

the depth or width of convolution. The learning ability of 40 
convolutional neural network (CNN) structure is still under- 
explored. In this paper, a detail-enhanced attention block (DEAB) 39 

consisting of the detail-enhanced convolution (DEConv) and the 38 
content-guided attention (CGA) is proposed to boost the feature 
learning for improving the dehazing performance. Specifically, 37 

the DEConv integrates prior information into normal convolution 36 
layer to enhance the representation and generalization capacity. 
Then by using the re-parameterization technique, DEConv is 35 

equivalently converted into a vanilla convolution with NO extra 
parameters and computational cost. By assigning unique spatial 
importance map (SIM) to every channel, CGA can attend more 33 

useful information encoded in features. In addition, a CGA- based 
mixup fusion scheme is presented to effectively fuse the 
features and aid the gradient flow. By combining above 
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Small + Paramerters (M) , La(ge 

mentioned components, we propose our detail-enhanced attention 
network (DEA-Net) for recovering high-quality haze-free images. 
Extensive experimental results demonstrate the effectiveness of 
our DEA-Net, outperforming the state-of-the-art (SOTA) methods 
by boosting the PSNR index over 41 dB with only 3.653 M 
parameters. The source code of our DEA-Net will be made 
available at https://github.com/cecret3350/DEA-Net. 

Index Terms—Image dehazing, Detail-enhanced convolution, 
Content-guided attention, Fusion scheme. 

 

I. INTRODUCTION 

MAGES captured under hazy scenes usually suffer from 

noticeable visual quality degradation in contrast or color 

distortion [1], leading to significant performance drop when 

inputting to some high-level vision tasks (e.g., object de- 

tection, semantic segmentation). Haze-free images are highly 

demanded or required among these tasks. Therefore, single 

image dehazing, which aims to recover the clean scene from 

the corresponding hazy image, has attracted significant atten- 

tion among both the academic and industrial communities over 

the past decade. As a fundamental low-level image restoration 

task, image dehazing can be the pre-processing step of the 

subsequent high-level vision tasks. In this paper, we attempt to 

Z. Chen, Z. He and Z.M. Lu are with School of Aeronautics and Astro- 
nautics, Zhejiang University (e-mail: zeweihe@zju.edu.cn). 

This work was funded by China Postdoctoral Science Foundation funded 
project (No. 2022M712792). 

†The first two authors contribute equally to this work. 
∗Corresponding author: Zhe-Ming Lu. 

This paper was produced by the IEEE Publication Technology Group. They 
are in Piscataway, NJ. 

Manuscript received April 19, 2021; revised August 16, 2021. 

Fig. 1. Graph of PSNR vs. number of parameters. We compare our DEA- Net 
with some state-of-the-art methods (after 2020). The results are tested on 
SOTS-indoor dataset. Note that AECR-Net adopts a sharing strategy to reduce 
the number of parameters. 

 

 

develop an effective algorithm to remove the haze and recover 

the details from the hazy input. 

Recently, with the rapid development of deep learning, 

convolution neural network (CNN) based dehazing methods 

achieve superior performance [2]–[6]. Earlier CNN-based 

methods [2], [7], [8] first estimate the transmission map and 

the atmospheric light separately, and then utilize the 

atmospheric scattering model (ASM) [9] to derive the haze- 

free images. Typically, the transmission map is supervised by 

the ground truth, which is used for synthesizing the training 

dataset. However, inaccurate estimation of the transmission 

map or the atmospheric light would significantly influence the 

image restoration results. More recently, some methods [6], 

[10], [11] prefer to predict the latent haze-free images in an end-

to-end manner since it tends to achieve promising results. 

However, there still exists two main issues: 

(1) Less effectiveness of vanilla convolution. Previous works 

[12]–[14] prove that well-designed priors like dark channel 

prior [12], [15], non-local haze-line prior [13], and color 

attenuation prior [14], are helpful for recovering missing 

information. Most of existing dehazing methods [5], [6], 

[16] adopt classical convolution layers for feature extraction 

without utilizing these priors. However, vanilla convolutions 

search the vast solution space without any constrains, which 
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to some extend may limit the expressive ability (or modeling 

capacity). In addition, some transformer-based methods [17] 

expand the receptive field to the whole image for mining long- 

distance dependencies. They can enhance the expressive ability 

(or modeling capacity) at the cost of complex training strategy 

and tedious hyper-parameter tuning. Also, the prohibitive 

computational cost and vast GPU memory occupation cannot 

be ignored. In this regard, the ideal solution is to embed 

the well-designed priors into CNN for improving the feature 

learning capability. 

(2) Haze non-uniformity. There are two kinds of non- 

uniformity in the dehazing problem: uneven haze distribution 

in image level and channel-wise haze difference in feature 

level. To cope with the first one, Qin et al. [5] employed 

a pixel attention (i.e., spatial attention) to generate a spatial 

importance map (SIM), which can adaptively indicating the 

importance levels of different pixel locations. Through this 

discriminative strategy, the FFA-Net model treats thin and 

thick haze regions unequally. Similarly, Ye et al. [11] tried to 

model the density of haze distribution via a density estimation 

module, which essentially is also a spatial attention. However, 

seldom researchers paid attention to the non-uniformity in 

feature level, which remains to be unexploited. The channel 

attention used in [5] can produce a channel-wise attention 

vector 1 to indicate the importance level of each channel, which 

fails to consider the contextual information in the spatial 

dimensions. The haze information is encoded into the feature 

maps after applying convolution layers. Different channels in 

the feature space have different meanings depending on the role 

of the filters applied. In this regard, we argue that spatial 

importance maps should be channel-specific, and consider two 

kinds of non-uniformity (image level and feature level) 

simultaneously. 

To address above mentioned issues, we design a detail- 

enhanced attention block (DEAB), which consists of a detail- 

enhanced convolution (DEConv) and a content-guided atten- 

tion (CGA) mechanism. The DEConv contains five convolu- 

tion layers (four difference convolutions [18] and one vanilla 

convolution), which are parallel deployed for feature extrac- 

tion. Specifically, a central difference convolution (CDC), an 

angular difference convolution (ADC), a horizontal difference 

convolution (HDC), and a vertical difference convolution 

(VDC) are adopted to integrate traditional local descriptors into 

the convolution layer, thus can enhance the representation and 

generalization capacity. In difference convolutions, the pixel 

differences in the image are firstly calculated, and then 

convolved with the convolution kernel to generate the output 

feature maps. The strategy of pixel pair’s difference calculation 

can be designed to explicitly encode prior information into 

CNN. For instance, HDC and VDC explicitly encode the gra- 

dient prior into the convolution layers via learning beneficial 

gradient information. 

Moreover, the sophisticated attention mechanism (i.e., CGA) 

is a two-step attention generator, which can produce the 

coarse spatial attention map firstly and then refine it 
1The global average pooling (GAP) operation reduces the spatial dimen- 

sions to one point. 

to the fine version. Specifically, given certain input feature 

maps, we utilize the spatial attention mechanism presented in 

[19] and the channel attention presented in [20] to generate the 

initial SIMs (i.e., the coarse version). Then, the initial SIMs are 

refined according to every channel of input feature maps to 

produce final SIMs. By using the content of input features to 

guide the generation of SIMs, CGA can focus on the unique 

part of features in each channel. It is worth mentioning that 

CGA as a universal basic block can be plug into neural 

networks to improve the performance in various image 

restoration tasks. 

Besides the improvements mentioned above, we re- 

parameterize the learned kernel weights of the parallel con- 

volutions to reduce the number of parameters and accelerate the 

training the testing process. The five parallel convolutions are 

simplified into one vanilla convolution layer with applying 

some constrains to the kernel weights and by using the 

linear property of convolution layers. Therefore, the proposed 

DEConv can extract richful features for improving dehazing 

performance while keeping the number of parameters and 

computational cost equal to the vanilla convolution. Fig. 1 

shows the efficiency and effectiveness of our method. 

Following [6], [10], [21], [22], we also adopt a U-net-like 

framework to make the major time-consuming convolution 

computations in the low-resolution space. Among them, the 

fusion of shallow and deep features is widely used. Feature 

fusion can enhance the information flow from shallow layers to 

deep ones, which is effective for feature preserving and 

gradient back-propagation. The information encoded in the 

shallow features is tremendously different from the informa- 

tion encoded in the deep features, since the diverse receptive 

fields. One single pixel in the deep features are originated from 

a region of pixels in the shallow features. Simple addition or 

concatenation operation is unable to solve the receptive field 

mismatch problem. We further propose a CGA-based mixup 

scheme to adaptively fuse the low-level features in the encoder 

part with corresponding high-level features, by modulating the 

features via learned spatial weights. 

The diagram of our proposed method are shown in 

Fig. 2. We term the proposed single image dehazing model 

as DEA-Net by introducing the Detail-Enhanced Attention 

block (DEAB) with the Detail-Enhanced convolution and the 

content-guided Attention. 

To conclude, we have following main contributions: 

• We design a detail-enhanced convolution (DEConv), 

which contains parallel vanilla and difference convolu- 

tions. To the best of our knowledge, it’s the first time that 

difference convolutions are introduced to solve the image 

dehazing problem. By encoding prior information into 

normal convolution layer, the representation and gen- 

eralization capacity of DEConv is enhanced for improv- 

ing dehazing performance. In addition, we equivalently 

convert the DEConv into a normal convolution with NO 

extra parameters and computational cost via using re- 

parameterization technique. 

• We propose a novel attention mechanism called content- 

guided attention (CGA) to generate the channel-specific 

SIMs in a coarse-to-fine manner. By using input fea- 
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tures to guide the generation of SIMs, CGA assigns unique 

SIM to every channel, making the model attend significant 

regions of each channel. Thus, more useful information 

encoded in features can be emphasized to effectively 

improve the performance. Moreover, a CGA- based mixup 

fusion scheme is presented to effectively fuse the low-

level features in the encoder part with corresponding high-

level features. 

• By combining DEConv and CGA, and using CGA-based 

mixup fusion scheme, we propose our detail-enhanced 

attention network (DEA-Net) for reconstructing high- 

quality haze-free images. DEA-Net shows superior per- 

formance over the state-of-the-art dehazing methods on 

multiple benchmark datasets, achieving more accurate 

results with faster inference speed. 

The remainder of this paper is organized as follows. We first 

review a number of deep learning-based dehazing methods in 

Sec. II. Sec. III describes the proposed EDA-Net model in 

detail, and Sec. IV shows the experimental results. Finally, Sec. 

V concludes this paper. 

II. RELATED WORK 

A. Single Image Dehazing 

For single image dehazing, existing methods can be mainly 

divided into two categories. One is to manually generalize the 

statistical discrepancy between the hazy and haze-free images 

as empirical priors. Another one aims to directly or indirectly 

learning the mapping function based on large-scale datasets. 

We usually term the former as the prior-based methods and the 

latter as the data-driven methods. 

The prior-based methods are the pioneers of image dehaz- 

ing. They usually rely on atmospheric scattering model (ASM) 

[9] and handcraft priors. The widely known priors include dark 

channel prior (DCP) [12], [15], non-local prior (NLP) [13], 

color attenuation prior (CAP) [14], etc. He et al. [12], 

[15] proposed DCP based on a key observation - most local 

patches in haze-free outdoor images contain some pixels which 

have very low intensities in at least one color channel, which 

can help estimate the transmission map. CAP [14] starts from 

the HSV color model, and establishes a linear relationship 

between depth and the difference of brightness and saturation. 

Berman et al. [13] found that pixel clusters of haze-free images 

will become haze-lines when haze presents. These prior-based 

methods have achieved promising dehazing results. However, 

they tend to work well only in specific scenes which happen to 

satisfy their assumptions. 

Recently, with the rising of deep learning, researchers 

focused on data-driven methods, since they can achieve better 

performance. Earlier data-driven methods usually perform de- 

hazing based on the physical model. For instance, DehazeNet 

[2] and MSCNN [7] utilize CNNs to estimate the transmis- sion 

map. Then, AOD-Net [3] rewrites the ASM and esti- mates 

atmospheric light together with transmission map. Later, 

DCPDN [8] estimates the transmission map and atmospheric 

light by two different networks. However, the cumulative er- 

rors introduced by inaccurate estimations of transmission map 

and atmospheric light may cause the performance degradation. 

To avoid this, more recent works tend to recover the haze- 

free image from the hazy image directly without the help of the 

physical model. GFN [23] gates and fuses three enhanced 

images from original hazy inputs to generate the haze-free 

images. GridDehazeNet [24] utilizes a three-stage attention- 

based grid network to recover the haze-free images. MSBDN 

[10] utilizes boosting strategy and back-projection technique to 

enhance the feature fusion. FFA-Net [5] introduces the feature 

attention mechanism (FAM) to dehazing network to deal with 

different types of information. AECR-Net [6] reuses the feature 

attention block (FAB) [5] and proposes a novel contrastive 

regularization, which can benefit from both positive samples 

and negative samples. UDN [22] analyzes two types of 

uncertainty in image dehazing, and utilizes them to increase the 

dehazing performance. PMDNet [11] and Dehamer [17] adopt 

transformer to build long-range dependencies and per- form 

dehazing with the guidance of haze density. However, as data-

driven methods develop and dehazing performance improves, 

the complexity of dehazing networks also increases. Different 

from previous works, we rethink the deficiencies of vanilla 

convolution in image dehazing and design a novel convolution 

operator by combining well-designed priors into CNN for 

improving the feature learning capability. We also dig deeper 

into the unexploited non-uniformity of haze in feature level. 

B. Difference Convolution 

The origin of difference convolutions can be traced back 

to the local binary pattern (LBP) [25], which encodes the pixel 

differences in the local patch to a decimal number for texture 

classification. Since the success of CNNs in com- puter vision 

tasks, Xu et al. [26] proposed the local binary convolution 

(LBC) which encodes the pixel differences by using non-linear 

activation functions and linear convolution layers. Recently, 

Yu et al. [27] proposed the central difference convolution 

(CDC) to directly encode the pixel differences with completely 

learnable weights. Later, various forms of dif- ference 

convolutions have been proposed, such as cross central 

difference convolution [28] and pixel difference convolution 

[29]. Considering the nature of the difference convolution for 

capturing gradient-level information, we firstly introduce it to 

single image dehazing for improving the performance. 

III. METHODOLOGY 

As shown in Fig. 2, our DEA-Net consists of three parts: 

encoder part, feature transform part, and decoder part. As the 

core of our DEA-Net, the feature transform part adopts stacked 

detail-enhanced attention blocks (DEABs) to learn haze-free 

features. There are three levels in the hierarchical structure, and 

we employ different blocks in different levels to extract 

corresponding features (level 1&2: DEB, level 3: DEAB). 

Given a hazy input image I ∈ R3×H×W , the goal of DEA-Net 

is to restore the corresponding haze-free image J ∈ R3×H×W . 

 

A. Detail-enhanced Convolution 

In single image dehazing domain, previous methods [5], [6], 

[16] usually utilize vanilla convolution (VC) layers for 
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Fig. 2. The overall architecture of our proposed detail-enhanced attention network (DEA-Net), which is a three-level encoder-decoder-like architecture. 
DEA-Net contains three parts: encoder part, feature transform part, and decoder part. We deploy detail-enhanced attention blocks (DEABs) in the feature 
transform part, and deploy detail-enhanced blocks (DEBs) in rest parts. 

 
 

 
 

Fig. 3. Detail-enhanced convolution (DEConv). It contains five parallel 
deployed convolution layers including: a vanilla convolution (VC), a central 
difference convolution (CDC), an angular difference convolution (ADC), a 
horizontal difference convolution (HDC), and a vertical difference convolution 
(VDC). 

 

 

feature extraction and learning. Normal convolution layers 

search the vast solution space without any constrains (even start 

from random initialization), restricting the expressive ability or 

modeling capacity. Then we notice that the high- frequency 

information (e.g., edges and contours) is of great significance 

in recovering an image captured under the hazy scene. Based 

on this, some researchers [8], [21], [30] adopted the edge prior 

in the dehazing model to help restore sharper contours. Inspired 

by their works [8], [30], we design a detail- enhanced 

convolution (DEConv) layer (see in Fig. 3), which can integrate 

well-designed priors into vanilla convolution layers. 

Before elaborating the proposed DEConv in detail, we first 

recap the difference convolution (DC). Previous works [27]– 

[29], [31] usually describe the difference convolution as the 

convolution of pixel differences (the pixel differences are 

firstly calculated, and then convolved with the kernel weights 

to generate feature maps), which can enhance the representa- 

tion and generalization capacity of vanilla convolution. Central 

difference convolution (CDC) and angular difference convolu- 

tion (ADC) are two kinds of typical DCs, and implemented by 

re-arranging learned kernel weights to save computational cost 

and memory consumption [29]. It proves to be effective for 

edge detection [29] and face anti-spoofing tasks [27], [28], [31]. 

To the best of our knowledge, it is the first time that we 

introduce DC to solve the single image dehazing problem. 

In our implementation, we employ five convolution layers 

(four DCs [18] and one vanilla convolution), which are parallel 

deployed for feature extraction. In DCs, the strategy of pixel 

pair’s difference calculation can be designed to explicitly en- 

code prior information into CNN. For our DEConv, besides the 

central difference convolution (CDC) and the angular differ- 

ence convolution (ADC), we derive the horizontal difference 

convolution (HDC) and the vertical difference convolution 

(VDC) to integrate traditional local descriptors (like Sobel [32], 

Prewitt [33], or Scharr [34]) into the convolution layer. As 

shown in Fig. 4, taking HDC as an example, the horizontal 

gradient is firstly calculated by computing the differences of 

selected pixel pairs. After training, we re-arrange the learned 

kernel weights equivalently, and apply convolution directly 

to the untouched input features. Note that, the equivalent kernel 

has the similar format of traditional local descriptors (the sum 

of horizontal weights equals to zero). Horizontal kernels of 

Sobel [32], Prewitt [33], and Scharr [34] can be 
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Fig. 4. The derivation of horizontal difference convolution (HDC). 

(a) Back-Propagation (b) Forward-Propagation 

 
regarded as the special case of the equivalent kernel. VDC has 

the similar derivation by changing the horizontal gradient to 

corresponding vertical counterpart. Both HDC and VDC 

explicitly encode the gradient prior into the convolution layers 

to enhance the representation and generalization capacity via 

learning beneficial gradient information. 

In our design, the vanilla convolution serves to obtain the 

intensity-level information while the difference convolutions 

are used to enhance gradient-level information. We simply add 

the learned features together to obtain the output of DEConv. 

We trust more sophisticated designs of the way for calculating 

the pixel difference can further benefit image restoration task, 

which is not the main direction of this paper. 

However, deploying five parallel convolution layers for 

feature extraction will undesirably cause the increase of pa- 

rameters and inference time. We seek to exploit the additivity 

of convolution layers for simplifying the parallel deployed 

convolutions into a single standard convolution. We notice 

a useful property of the convolution: if several 2D kernels with 

the identical size operate on the same input with the same 

stride and padding to produce outputs, and their outputs are 

summed up to obtain the final output, we can add up these 

kernels on the corresponding positions to obtain an equivalent 

kernel which will produce the identical final output. 

Surprisingly, our DEConv exactly fits this situation. Given the 

input features Fin, DEConv can output Fout with identical 

computational cost and inference time to a vanilla convolution 

layer by utilizing re-parameterization technique. The formula is 

as follows (the biases are omitted for simplification): 

Fig. 5. The process of the re-parameterization technique. 

 

 

phase, the kernel weights of the parallel convolutions are fixed 

and the converted kernel weights are calculated by adding 

up them on the corresponding positions. Note that, the re- 

parameterization technique can accelerate the training and 

testing process simultaneously, since both of them contain the 

forward-propagation phase. 

Compare with the vanilla convolution layer, the proposed 

DEConv can extract more richful features while maintains the 

parameter size, and introduces no extra computational cost and 

memory burdens in the inference stage. More discussions about 

DEConv can be found in Sec. IV-C1. 

 

B. Content-guided Attention 

Feature attention module (FAM) consists of a channel 

attention and a spatial attention, which are sequentially placed 

to calculate the attention weights in channel and spatial 

dimensions. The channel attention calculates a channel-wise 

vector, i.e., Wc ∈ RC×1×1, to re-calibrate the features. The 

spatial attention calculates a spatial importance map (SIM), i.e., 

Ws ∈ RH×W to adaptively indicate the importance levels of 

different regions. The FAM treats different channels and 

pixels unequally, improving the dehazing performance. 

However, the spatial attention inside FAM can only address 

the uneven haze distribution in image level, and ignore the 

uneven distribution in feature level. The channel attention 

inside FAM models the channel-wise differences without 

considering the contextual information. With the expanding of 

feature channels, the image-level haze distribution information 

is encoded into the feature maps. Different channels in the 

Fout = DEConv(Fin ) = 
5 

i=1 
Fin ∗ Ki  

(1) 
feature space have different meanings depending on the role 

of the filters applied. That means for every channel of features, 

= Fin ∗ ( 
5 

i=1 
Ki) = Fin ∗ Kcvt, the haze information is unevenly spread across the spatial 

dimensions. The channel-specific SIMs are desired in t
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emphasized to effectively improve the dehazing performance. 

As shown in the right part of Fig. 2, combining proposed 

DEConv with the CGA, we propose the main block of our 

DEA-Net, i.e., detail-enhanced attention block (DEAB). By 

removing the CGA part, we obtain the detail enhanced block 

(DEB). 

 

S 

 

C. CGA-based Mixup Fusion Scheme 

Following [6], [10], [21], [22], we adopt the encoder- 
Fig. 6. The diagram of content-guided attention (CGA). CGA is a coarse- 

to-fine process: the coarse version of SIMs (i.e., Wcoa ∈ RC×H×W ) is 
generated firstly and then every channel is refined by the guidance of input 
features. 

The detailed procedures of CGA are illustrated in Fig. 6, let 

X ∈ RC×H×W denotes the proceeding input features, the 

goal of CGA is to generate channel-specific SIMs (i.e., W ∈ 
RC×H×W ), which has the identical dimensions with X. 

decoder-like (or U-Net-like) architecture for our DEA-Net. We 

observe that fusing the features from the encoder part with that 

from the decoder part is an effective trick in dehazing and 

other low-level vision tasks [6], [10], [36], [37]. Low- level 

features (e.g., edges and contours), which have a non- 

negligible role for recovering haze-free images, gradually lose 

their impact after passing through many intermediate layers. 

Feature fusion can enhance the information flow from shallow 

We first compute the corresponding Wc 
ing [19], [20]. 

Wc = C1×1(max(0, C1×1(Xc 

and Ws 

 
))), 

by follow- 

 

 
(2) 

layers to deep ones, which is beneficial for feature preserving 

and gradient back-propagation. The simplest way for fusion 

is element-wise addition, which is adopted in many previous 

approaches [10], [11], [21]. Later, Wu et al. [6] applied the 

Ws = C7×7([Xs s 
GMP ]), 

adaptive mixup operation to adjust the fusion proportion via 
self-learned weights, which is more flexible than the addition. 

where max(0, x) denotes the ReLU activation function, 

Ck×k(·) denotes a convolution layer with k × k kernel size, 
However, there exists a receptive field mismatch problem 

in above mentioned fusion schemes. The information encoded 

[·] denotes the channel-wise concatenation operation. Xc , in the shallow features is tremendously different from the 

s 
GAP , and Xs denote the features processed by global information encoded in the deep features, since they have the 

average pooling operation across the spatial dimensions, global 

average pooling operation across the channel dimension, and 

global max pooling operation across the channel dimension, 

respectively. To reduce the number of parameters and limit the 

model complexity, the first 1 × 1 convolution reduces the 
channel dimension from C to C (r refers to the reduction 

totally different receptive fields. One single pixel in the deep 

features are originated from a region of pixels in the shallow 

features. Simple addition or concatenation operation or mixup 

operation fails to address the mismatch before fusion. 

To mitigate this problem, we further propose a CGA-based 

ratio), and the second 1 × 1 
r 

convolution expands it back to C. 
mixup scheme to adaptively fuse the low-level features in 
the encoder part with corresponding high-level features, by 

In our implementation, we opt to reduce the channel dimension 

to a fixed value (i.e., 16) by setting r to  C . 
Then we fuse Wc and Ws together via a simple addition 

operation, which follows broadcasting rules, to obtain the 

coarse SIMs Wcoa ∈ RC×H×W . We experimentally find the 

product operation can achieve similar results. 

Wcoa = Wc + Ws, (3) 

In order to obtain the final refined SIMs W , every channel 

modulating the features via learned spatial weights. 

Fig. 2 (d) shows the details of proposed CGA-based mixup 

fusion scheme. The core part is that we opt to employ the CGA 

to calculate the spatial weights for feature modulation. The low-

level features in the encoder part and corresponding high- level 

features are fed into the CGA to calculate the weights, and then 

combined by a weighted summation method. We also add the 

input features via skip connections to mitigate gradient 

CGA 

S 

C 

1×1Conv 

1×1Conv 

, X 

X 

  ܹ  
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D. Overall Architecture 

By combining (1) DEConv, (2) CGA, and (3) CGA-based 

mixup fusion scheme together, we propose our DEA-Net with 

DEAB and DEB as the basic blocks. As shown in Figure 

2, our DEA-Net is a three-level encoder-decoder-like (or U- 

Net-like) architecture, which consists of three parts: encoder 

part, feature transform part, and decoder part. There are two 

down-sampling operations and two up-sampling operations in 

our DEA-Net. The down-sampling operation halves the spatial 

dimensions and doubles the number of channels. It is realized 

through a normal convolution layer by setting the value of 

stride to 2 and setting the number of output channels to 2 times 

of input channels. The up-sampling operation can be regarded 

as the inverse form of the down-sampling operation, which is 

realized through a deconvolution layer. The dimensional size 
of level 1, level 2, and level 3 are C × H × W , 2C × H × W , 

images and 1000 synthetic testing images, is also employed to 

evaluate our DEA-Net. Besides, some real-captured hazy 

images are utilized to further verify the effectiveness on real 

scenes. 

Evaluation Metrics. Peak signal-to-noise-ratio (PSNR) and 

structural similarity index (SSIM) [40], which are commonly 

used to measure the image quality among the computer vision 

community, are utilized for dehazing performance evaluation. 

For a fair comparison, we calculate the metrics based on the 

RGB color images without cropping pixels. 

 

B. Implementation Details 

We implement the proposed DEA-Net model on PyTorch 

deep learning platform with a single NVIDIA RTX3080Ti 

GPU. We deploy DEB, DEB, and DEAB in level 1, level 

2, and level 3, respectively. The number of blocks deployed 

2 2 
and 4C × H × W , respectively. In our implementation, we set on different stages [N , N , N , N , N ] is set to [4, 4, 8, 4, 4]. 

4 4 1 2 3 4 5 

the value of C to 32. Previous methods [6], [22] transform the 

features only in the low-resolution space, resulting in information 

loss, which is non-trivial for the detail-sensitive task like dehazing. 

Differently, we deploy feature extraction blocks from level 1 to level 

3. Specifically, we opt to employ different blocks in different levels 

(level 1&2: DEB, level 3: DEAB). For feature fusion, we fuse the 

features after the down-sampling operations and corresponding 

features before 

the up-sampling operations (highlighted with green arrow lines in Fig. 

2). Finally, we simply employ a 3×3 convolution layer at the end to 

obtain the dehazing result J. 

The DEA-Net is trained by minimizing the pixel-wise 

difference between the predicted haze-free image J and the 

corresponding ground truth GT . In our implementation, we choose L1 
loss function (i.e., mean absolute error) to drive the training. 

LL1 = ||J − GT ||1, (6) 

 

IV. EXPERIMENT 

A. Datasets and Metrics 

Datasets. In our implementation, we train and test our 

proposed DEA-Net on synthetic and real-captured datasets. 

REalistic Single Image DEhazing (RESIDE) [38] is a widely- 

used dataset, which contains five subsets: Indoor Training Set 

(ITS), Outdoor Training Set (OTS), Synthetic Objective Test- 

ing Set (SOTS), Real-world Task-driven Testing Set (RTTS), 

and Hybrid Subjective Testing Set (HSTS). We select ITS and 

OTS in the training phase and select SOTS in the testing phase. 

Note that, the SOTS is divided into two subsets (i.e., SOTS-

indoor and SOTS-outdoor) for evaluating the models separately 

trained on ITS and OTS. ITS contains 1399 indoor clean 

images and for every clean image, 10 simulated hazy images 

are generated based on the physical scattering model. As for 

OTS, we pick around 296K images for the training process 2. 

SOTS-indoor and SOTS-outdoor contain 500 indoor and 500 

outdoor testing images, respectively. In addition, Haze4K 

dataset [39], which contains 3000 synthetic training 

2Following [24], data cleaning is applied since the intersection of training 
and testing datasets. 

The DEA-Net is optimized using Adam [41] optimizer and β1, 

β2, ε are set to default values, i.e., 0.9, 0.999, 1e−8. Moreover, 

the initial learning rate and the batch size are set to 1e−4 and 16, 

respectively. Cosine annealing strategy [42] is adopted to adjust 
the learning rate from the initial value to 1e−6. To train the 

model, we randomly crop patches from the original images with 

size 256×256, then two data augmentation techniques are 

adopted including: 90◦ or 180◦ or 270◦ rotation and vertical 

or horizontal flip. In the whole training phase, the model is 

trained for 1500K iterations, and it takes roughly 5 days to train 

our DEA-Net on ITS. 

 

C. Ablation Study 

To demonstrate the effectiveness of our proposed DEA- Net, 

we investigate on the designs and effects of (1) Detail- 

enhanced convolution (DEConv), (2) Content-guided atten- 

tion (CGA), and (3) CGA-based mixup fusion scheme. The 

contribution of each components are analyzed via ablation 

experiments. 

1) DEConv: We first construct the baseline model by deploying 

classical residual block (RB) [43] in level 3, and this model is denoted 

as Base RB. As a popular basic block used in dehazing domain, we 

also employ the feature attention block (FAB) from [5] in level 3. The 

hyper-parameters are set to the default values as described in the 

original paper. We term this model as our second baseline, Base FAB. 

To extract more effective features, we revise the block by 

introducing DEConv into RB and FAB. As illustrated in Fig. 7, the first 

vanilla convolution layer is replaced with the proposed DEConv in 

both RB and FAB. The blocks deployed in level 

3 are indicated as RBw/ DEConv and FABw/ DEConv, respectively. The 

corresponding models are denoted as Model RB D and Model FAB

D. 

For a fair comparison, all of the four blocks (i.e., RB, FAB, 

RBw/ DEConv, and FABw/ DEConv) are cascaded for 6 times in level 

3, and the same fusion scheme is used (i.e., Mixup [5]). For 

convenience, we omit the blocks in level 1 and level 2, and train 

the models for only 500K iterations with initial learning rate is 

set to 2e−4 (These settings are with the ablation study). The 

experimental results are tested on the same testing dataset 
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TABLE I 
ABLATION STUDY OF DECONV AND CGA. ALL THE EXPERIMENTS ARE CONDUCTED ON SOTS-INDOOR [38] DATASET. 

 

 

Setting 

 

 

 

 

 

 

 
 

Fig. 7. The schematic diagrams of RB, RBw/ DEConv, FAB, and FABw/ DEConv. The 
first vanilla convolution layer in RB/FAB is replaced with the proposed 
DEConv to generate the RBw/ DEConv/FABw/ DEConv. 

 

 

(i.e., SOTS-Indoor [38] dataset). Although metrics are lower 

than the completely trained models reported in Table. V, the 

trends and values are consistent and meaningful. 

The performance of all these aforementioned models is summarized 

in Table. I. Replacing the vanilla convolution layer with the parallel 

convolution layers (i.e., DEConv) brings 

0.27 and 0.6 dB improvement in terms of PSNR on RB and FAB, 

respectively. By comparing Model FAB D with Base FAB, the 

results indicate that DEConv can definitely improve the values of 

metrics (i.e., PSNR and SSIM) at the cost of around twice number 

of parameters (4505 K vs. 2143 K). That is very unfriendly and may 

cause failure under some memory-limited situations, prohibiting the 

usage of the DEConv on mobile or embedded devices. 

In order to deal with the problem, we equivalently transform the 

DEConv into a standard 3 × 3 convolution by adding up the 

learned kernel weights in the same positions (i.e., re-
parameterization). Table. II shows the comparative results of the 
number of parameters (# Param.), the number of 

floating-point operations (# FLOPs) and inference time of Model

FAB D before and after the re-parameterization opera- tion. We can 

clearly see that the re-parameterization operation simplifies the parallel 

structure without triggering performance drop. In particular, after the 

simplification, Model FAB D still achieves 0.6 dB performance 

improvement when comparing with Base FAB and no extra overhead 

is introduced. 

In addition, we also explore the designs of parallel convo- 

lution layers from only a single vanilla convolution layer (i.e., 

FAB) to two parallel vanilla convolution layers, then to the 

 
 

 
 

 

 
 

 

 
TABLE II 

THE COMPARATIVE RESULTS OF THE NUMBER OF PARAMETERS (# 

PARAMETERS), THE NUMBER OF FLOATING-POINT OPERATIONS (# 
FLOPS) AND INFERENCE TIME OF Model FAB D BEFORE AND AFTER THE 

RE-PARAMETERIZATION OPERATION. RE-PA. IS SHORT FOR THE 
RE-PARAMETERIZATION OPERATION. 

 

 

# Param. (K) 4505 2143 2143 
# FLOPs (G) 23.72 9.23 9.23 

inference time (ms) 4.53 1.76 1.76 

PSNR (dB) 33.67 33.67 33.07 

 

 

 

complete DEConv (i.e., FABw/ DEConv). As shown in Table. III, 

adding a parallel vanilla convolution layer to the FAB causes a 

0.15 dB performance drop. The underlying reason behind this 

may be the training difficulty due to redundant features 

extracted by the identical layers. On the contrary, adding a 

parallel CDC layer to the FAB boosts the performance. The 

experimental results verify that by embedding traditional prior 

information, difference convolution (DC) layers can effectively 

extract more representative features. We also observe that 

by adding more parallel DC streams for feature extraction, the 

performance gradually improves from 33.07 dB to 33.67 dB in 

terms of PSNR. Similar trend can be observed in terms of 

SSIM. Based on the discussions above, we choose Model FAB

D with basic block FABw/ DEConv for the following study. 

 
TABLE III 

THE EXPERIMENTAL RESULTS ON DESIGNS OF PARALLEL CONVOLUTION 

LAYERS. ✓✓MEANS THE SAME CONVOLUTION LAYER IS USED TWICE 
WITHIN TWO PARALLEL STREAMS. THE METRICS ARE TESTED ON 

SOTS-INDOOR [38] DATASET. 

 

Design FAB + vanilla + DC + DC FABw/ DEConv 

Vanilla Conv. ✓ ✓✓ ✓ ✓ ✓ 

+ CDC   ✓ ✓ ✓ 

+ HDC & VDC    ✓ ✓ 

+ ADC     ✓ 

PSNR 33.07 32.92 33.23 33.43 33.67 

SSIM 0.9824 0.9820 0.9826 0.9833 0.9840 

 

2) CGA: Further, we investigate the effectiveness of the 

proposed two-step coarse-to-fine attention mechanism (i.e., 

CGA). As mentioned in Section I, CGA generates channel- 

specific spatial importance maps (SIMs) to indicate the im- 

Level 1 
Level 2 

– 
– 

– 
– 

– 
– 

– 
– 

– 
– 

– 
– 

Level 3 RB FAB RBw/ DEConv FABw/ DEConv FABw/ DEConv & CGA (DEAB) FABw/ DEConv & CBAM 

Attention – FAM – FAM CGA CBAM [19] 

 PSNR (dB) 30.74 33.07 31.01 33.67 35.17 34.68 
SSIM 0.9729 0.9824 0.9739 0.9840 0.9866 0.9857 

# Param. (K) 2105 2143 4467 4505 4569 4493 

 

Model Base RB Base FAB Model RB D Model FAB D Model DEAB Model FAB D CBAM 

Model FAB D Base FAB 
w/o Re-Pa. w/ Re-Pa.  – 
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portant regions of individual channel. We compare the CGA 

with the other attention mechanisms such as feature attention 

module (FAM) used in many dehazing methods [5], [6], 

[16] and the common convolutional block attention module 

(CBAM) [19]. Both FAM and CBAM contain sequential 

channel attention and spatial attention with slightly different 

implementations. 
Model FAB D cascades FABw/ DEConv blocks in level 3 and inside the 

FABw/ DEConv block, the FAM is adopted. Then, we combine CGA and 

CBAM into FABw/ DEConv block to gener- ate the FABw/ DEConv & CGA (i.e., 

DEAB) and FABw/ DEConv & CBAM, respectively, and the corresponding 

models are denoted as Model DEAB and Model FAB D CBAM. 

The spatial attention used in FAM or CBAM learns the SIM 

with only one single channel to indicate the important regions 

of the input features with relatively larger number of channels. 

Such approaches neglect the specificity of each channel of 

features and somehow restrict the powerful representation 

ability of CNNs. As shown in the right three columns of Table. 

I, Model DEAB outperforms both Model FAB D and Model

FAB D CBAM by 1.5 dB and 1.01 dB in terms of PSNR. 

The results indicate that CGA can better re-calibrate the 

features via learning channel-specific SIMs to pay attention to 

channel-wise haze distribution difference. 

Fig. 8 visually illustrates the SIMs learned by CGA and FAM 

and the corresponding processing results. As we can see from 

Fig. 8e, one-channel SIM obtained by FAM can indicate the 

uneven haze distribution (to some extend). However, it is not 

accurate enough (e.g., the red chairs region) due to the mix of 

some contour patterns. By using the content of input features to 

guide the generation of SIMs, CGA can learn more accurate 

spatial weights. Fig. 8f shows eight randomly selected channels 

of SIMs, and the average map of all SIMs (right bottom). The 

channel-specific SIMs treat different channels of features with 

different spatial weights, which can better guide the model to 

focus on critical regions. Fig. 8c and Fig. 8d are the 

corresponding results. We observe that the arched door region 

(highlighted by the red rectangle) recovered by Model FAB D 

has obvious haze residual. 

3) CGA-based Mixup Fusion Scheme: We further perform 

ablation study to verify the effectiveness of proposed CGA- 

based mixup fusion scheme. We utilize Model DEAB with 

mixup fusion scheme from AECR-Net [6] as the baseline, and 

then evaluate another two schemes: element-wise addi- tion 

[10], [11], [21] and proposed CGA-based mixup. Their models 

are referred to Model DEAB A and Model DEAB C. The 

comparative results are shown in Table. IV. From these results, 

we see that addition achieves very similar performance with 

mixup (0.06 dB higher PSNR and 0.002 lower SSIM). Addition 

is a special case of mixup with the constant weights, and we 

experimentally find that the initial values have a significant 

impact on the performance of mixup. Note that, our proposed 

CGA-based mixup fusion scheme achieves the best 

performance in terms of PSNR and SSIM. 

In addition, we deploy feature extraction blocks in level 

1 and 2 to further improve the performance. By deploying 

residual block (RB) in level 1 and level 2 (we refer this model 

to Model MS), the performance improves by a large margin 

 

  
(a) Hazy (b) GT 

 

  
(c) Model FAB D (d) Model DEAB 

 

 

 
 

 

 
 

 

(e) SIM of (c) (f) SIMs of (d) 

Fig. 8. Visual comparisons of FAM and our proposed CGA. We show the 
learned SIMs and corresponding results. 

 

 

(2.52 dB in terms of PSNR). It means transforming features in 

high-resolution space even full-resolution space can repair the 

lost information, which is critical for image regression. Our 

final DEA-Net-S achieves 39.16 dB in terms of PSNR and 

0.9921 in terms of SSIM by deploying DEB in level 1 and 

2. The suffix ‘-S’ denotes the model is trained with the 

settings in ablation study, which is a simplified version. For 

Model MS and DEA-Net-S, [N1, N2, N3, N4, N5] is set to [3, 

3, 6, 3, 3]. It is worth mentioning that we omit the CGA in level 

1 and level 2 (simplify DEAB into DEB) by taking the model 

complexity into account and to avoid complex hyper- 

parameter tuning (e.g., the reduction ratio). 

 

D. Comparisons with SOTA Methods 

In this section, we compare our proposed DEA-Net with 4 

earlier dehazing approaches including DCP [12], DehazeNet 

[2], AOD-Net [3], GFN [23] and 8 recent state-of-the-art 

(SOTA) single image dehazing methods including FFA-Net 

[5], MSBDN [10], DMT-Net [39], AECR-Net [6], SGID- 

PFF [21], UDN [22], PMDNet [11], Dehamer [17] on SOTS- 

Indoor, SOTS-Ourdoor, Haze4K datasets. We report three 

DEA-Net variants including DEA-Net-S with the settings in 

ablation study (i.e., the final model of Table. IV), DEA-Net 

with normal settings, and DEA-Net-CR with normal settings 

and the contrastive regularization (CR) from AECR-Net [6]. 

DEA-Net-CR has identical setting of CR with AECR-Net 

[6]. Note that CR will not increase additional parameters and 

inference time, since it can be directly removed in the testing 

phase. For others, we adopt the official released codes or 

evaluation results of these methods for fair comparisons if 
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TABLE IV 

ABLATION STUDY OF CGA-BASED MIXUP FUSION SCHEME. WE COMPARE IT WITH ELEMENT-WISE ADDITION AND MIXUP [6]. ALL THE EXPERIMENTS 

ARE CONDUCTED ON SOTS-INDOOR [38] DATASET. 

 
 

 

 

Setting 

 
 

PSNR (dB) 35.23 35.17 35.40 37.92 39.16 

SSIM 0.9864 0.9866 0.9875 0.9915 0.9921 

 

 

(a) Hazy (b) DCP [12] (c) GDN [24] (d) FFA [5] (e) AECR-Net [6] (f) Ours (g) GT 

Fig. 9. Visual comparisons of various methods on synthetic SOTS-indoor [38] dataset. Please zoom in on screen for a better view. 

 

 

(a) Hazy (b) DCP [12] (c) GDN [24] (d) FFA [5] (e) Dehamer [17] (f) Ours (g) GT 

Fig. 10. Visual comparisons of various methods on synthetic SOTS-outdoor [38] dataset. Please zoom in on screen for a better view. 

 

 

(a) Hazy (b) DCP [12] (c) GDN [24] (d) FFA [5] (e) AECR-Net [6] (f) Dehamer [17] (g) Ours 

Fig. 11. Dehazing results of various methods on real-world hazy images. Please zoom in on screen for a better view. 

Model Model DEAB A Model DEAB Model DEAB C Model MS DEA-Net-S 

Level 1 – – – RB DEB 
Level 2 – – – RB DEB 
Level 3 DEAB DEAB DEAB DEAB DEAB 

Fusion scheme Addition Mixup CGA-based Mixup CGA-based Mixup CGA-based Mixup 
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TABLE V 
QUANTITATIVE COMPARISONS OF VARIOUS DEHAZING METHODS ON SOTS-INDOOR, SOTS-OURDOOR, AND HAZE4K. WE REPORT PSNR, SSIM, 

NUMBER OF PARAMETERS (# PARAM.), NUMBER OF FLOATING-POINT OPERATIONS (# FLOPS), AND RUNTIME TO PERFORM COMPREHENSIVE 
COMPARISONS. THE SIGN “-” DENOTES THE DIGIT IS UNAVAILABLE. BOLD AND UNDERLINED INDICATE THE BEST AND THE SECOND BEST RESULTS, 

RESPECTIVELY. 
 

 

(TPAMI’10) DCP [12] 16.61 0.8546 19.14 0.8605 14.01 0.76 - - - 
(TIP’16) DehazeNet [2] 19.82 0.8209 27.75 0.9269 19.12 0.84 0.008 0.5409 0.9932 
(ICCV’17) AOD-Net [3] 20.51 0.8162 24.14 0.9198 17.15 0.83 0.0018 0.1146 0.3159 

(CVPR’18) GFN [23] 22.30 0.8800 21.55 0.8444 - - 0.4990 14.94 - 
 

(AAAI’20) FFA-Net [5] 36.39 0.9886 33.57 0.9840 26.97 0.95 4.456 287.5 47.98 
(CVPR’20) MSBDN [10] 32.77 0.9812 34.81 0.9857 22.99 0.85 31.35 24.44 9.826 
(ACMMM’21) DMT-Net [39] - - - - 28.53 0.96 51.79 75.56 26.83 
(CVPR’21) AECR-Net [6] 37.17 0.9901 - - - - 2.611 52.20 - 
(TIP’22) SGID-PFF [21] 38.52 0.9913 30.20 0.9754 - - 13.87 152.8 20.92 
(AAAI’22) UDN [22] 38.62 0.9909 34.92 0.9871 - - 4.250 - - 
(ECCV’22) PMDNet [11] 38.41 0.9900 34.74 0.9850 33.49 0.98 18.90 - - 

(CVPR’22) Dehamer [17] 36.63 0.9881 35.18 0.9860 - - 132.4 48.93 14.12 
 

(Ours) DEA-Net-S 39.16 0.9921 - - - - 2.844 24.88 5.632 
(Ours) DEA-Net 40.20 0.9934 36.03 0.9891 33.19 0.99 3.653 32.23 7.093 

(Ours) DEA-Net-CR 41.31 0.9945 36.59 0.9897 34.25 0.99 3.653 32.23 7.093 

 

they are publicly available, otherwise we retrain them using the 

same training datasets. 

Quantitative Analysis. Table. V shows quantitative eval- 

uation results (PSNR and SSIM indexes) of our DEA-Nets and 

other state-of-the-art methods on SOTS [38] and Haze4K [39]. 

As we can see, even our DEA-Net-S achieves the best 

performance with 39.16 dB PSNR and 0.9921 SSIM on SOTS- 

indoor than the alternatives. Further, our DEA-Net and DEA- 

Net-CR improve the performance by a large margin on both 

SOTS-indoor and SOTS-outdoor. On Haze4K dataset, our 

DEA-Net and DEA-Net-CR achieve the best SSIM (0.9869 and 

0.9885). We round the results to two decimals to keep 

consistent with [39]. Our DEA-Net-CR ranks first in all 

comparisons on SOTS and Haze4K. 

In addition, we adopt number of parameters (# Param.), number of 

floating-point operations (# FLOPs), and runtime as the major 

indicators of computational efficiency. The earlier dehazing methods 

contain very small parameters sizes at the cost of a big performance 

drop. Compared with recent SOTA methods, our DEA-Nets run fastest 

with acceptable # Param. and # FLOPs. Any one of our DEA-Net 

variants can rank sec- ond best in terms of # Param. and # FLOPs. This 

implies our DEA-Nets can reach a good trade-off between 

performance 

and model complexity. Note that # FLOPs and runtime are measured 

on color images with 256 × 256 resolution. 

Qualitative Analysis. Fig. 9 shows the visual compar- isons 

between our DEA-Net and previous SOTA methods on 

synthetic SOTS-indoor dataset. Our proposed DEA-Net can 

recover sharper and clearer contours or edges, and the results 

obtained by DEA-Net contains less haze residuals. Fig. 10 

shows the visual comparisons on synthetic SOTS- ourdoor 

dataset. We observe that in outdoor scenes, the results of our 

DEA-Net are closest to the ground truth than the other 

alternatives. We also test our DEA-Net on real-world hazy 

images, and compare the results with various SOTA methods. 

As shown, the other methods either remain haze on the 

processed results or produce color deviations and artifacts. On 

the contrary, our DEA-Net can output more visually pleasing 

dehazing results. 

 

V. CONCLUSION 

In this paper, we propose a DEA-Net to deal with the 

challenging single image dehazing problem. Specifically, we 

design the detail-enhanced convolution (DEConv) by introduc- 

ing the difference convolution to integrate local descriptors into 

normal convolution layer. Compare with vanilla convo- lution, 

DEConv has enhanced representation and generaliza- tion 

capacity. In addition, the DEConv can be equivalently 

converted into a vanilla convolution without triggering extra 

parameters and computational cost. Then, we design a sophis- 

ticated attention mechanism termed content-guided attention 

(CGA), which assigns unique spatial importance map (SIM) to 

every channel. With CGA, more useful information encoded in 

features can be emphasized. Based on CGA, we further present 

a fusion scheme to effectively fuse low-level features in the 

encoder part with corresponding high-level features. Extensive 

experiments show that our DEA-Net achieves state-of-the-art 

results quantitatively and qualitatively. 
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