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ABSTRACT 

Background Traditional SCADA systems struggle to handle the growing complexity and real-

time data requirements of modern industrial processes powered by IoT sensors. 

Methods The research uses Multi-access Edge Computing (MEC) and Hierarchical Dirichlet 

Processes (HDPs) to enhance SCADA systems' real-time data analytics and anomaly detection 

capabilities. 

Objectives The goal is to improve SCADA systems by lowering latency, enhancing predictive 

maintenance, and allowing for dynamic, real-time data processing and decision-making in 

important industrial applications. 

Results The proposed system surpassed previous approaches with 92% accuracy, 90% 

efficiency, and 93% scalability, while also reducing latency by 95%, making it perfect for real-

time industrial operations. 

Conclusion Integrating MEC and HDPs into SCADA systems converts them into adaptive, 

efficient platforms capable of real-time analytics, which improves predictive maintenance and 

operational efficiency in a variety of industrial environments. 

Keywords: SCADA Systems, Multi-access Edge Computing (MEC), Hierarchical Dirichlet 

Processes (HDPs), Real-Time Data Analytics, Industrial IoT. 

1. INTRODUCTION 

SCADA systems have been pivotal in industrial process monitoring and control for decades. 

Industries such as energy, water treatment, manufacturing, and transportation have greatly 

depended on SCADA for real-time data collection, processing, and execution of commands 

(Gollavilli et al., 2023)[8]. However, modern industrial processes present another challenge for 

conventional SCADA systems: overwhelming complexity and information overload 

(Alagarsundaram et al., 2023)[9]. To make matters worse, cyber threats in the form of DDoS 

attacks raise greater demands on SCADA security and complicate the situation by requiring 

sophisticated detection technologies (Alagarsundaram, 2020)[10]. ntegration of AI-driven 
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solutions like robotic automation improves the efficiency of SCADA in its responsiveness 

(Gudivaka, 2024)[11]. Advanced anomaly detection models bolster real-time decision-making 

in critical monitoring systems (Grandhi et al., 2025)[12]. Machine learning methods such as 

CNN-LSTM enhance SCADA capabilities for conducting predictive analytics (Poovendran et 

al., 2024)[13]. Load forecasting models are also optimizing industrial energy management 

(Alagarsundaram et al., 2024)[14]. Blockchain-based frameworks secure data sharing for 

SCADA-driven infrastructures (Poovendran, 2024)[15]. 

In recent years, a multitude of MEC solutions has sprouted to confront contemporary SCADA 

systems with constraints of latency and bandwidth. It enables real-time processing by operating 

on data as close to the source as achievable, thereby minimizing reliance on a centralized cloud 

infrastructure (Kumaresan et al., 2024)[16]. Advanced machine learning algorithms improve 

the scope of edge computing by optimizing in-the-moment decision-making (Shnain et al., 

2024)[17]. Bi-directional LSTM further strengthens industrial automation by providing the 

predictive analytics and anomaly detection capability at the edge (Sitaraman et al., 2024)[18]. 

Robotic process automation frameworks onboard solutions for IoT-based operations by PCA 

and LASSO techniques (Gudivaka, 2024)[19]. Real-time big data processing allows accurate 

production analysis within smart industrial environments (Gudivaka, 2022)[20]. AI-based data 

processing frameworks optimize case investigation to improve efficiency and precision 

(Alagarsundaram, 2023)[21]. Deep learning also reflects its effect at the edge, allowing disease 

classification to improve medical diagnostic tools (Gudivaka et al., 2025)[22]. Agile 

development methodologies also improve MEC-driven programs for industrial computing 

(Tamilarasan et al., 2024)[23]. 

For SCADA systems, this means not only the traditional functionalities of data collection and 

control, but also enabling advanced analytics that would deal with the absolutely exponential 

data growth coming from many IoT devices, sensors, and industrial equipment. (...) Evolving 

technologies in this fast-changing landscape require solid encryption mechanisms as a very 

integral part to support data security (Alagarsundaram, 2019)[24].  Advanced optimization 

techniques, such as Levy distribution-based methodologies, also enhance the capacity of data 

handling for real-time analytics (Hussein et al., 2024)[25]. Models based on variational 

autoencoders enable better anomaly detection as well as predictive analyses that augment 

SCADA resilience (Gudivaka et al., 2024)[26]. Database management solutions help data 

storage and retrieval, optimizing cloud-driven infrastructures regarding SCADA operations 

(Nagarajan et al., 2023)[27]. Additionally, duplicable storage proof models offer integrity 

auditing mechanisms to secure the encrypted SCADA data (Alagarsundaram, 2022)[28]. AI-

driven automation frameworks play a key role in predictive healthcare applications and are 

demonstrative of SCADA's potential for monitoring medicine (Surendar et al., 2024)[30]. 

Other than SCADA control in the blockchain-e-voting system, Chinnasamy et al. (2024)[31] 

showcase secure decentralized approaches. Corporate synergy strategies will further integrate 

AI-driven solutions in industrial automation to enhance operational efficiency (Gattupalli et 

al., 2023)[29]. 

By bringing in HDP into SCADA systems, the SCADA-based data analytics undergo a huge 

enhancement in their power. These systems can now discern patterns, anomalies, and trends in 
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real-time, leading to enhanced predictive maintenance and operational efficiency (Sitaraman et 

al., 2024)[32]. AI-powered predictive models assist in diagnosing industrial faults, accordingly, 

proactive action can be taken to avert their occurrence (Basani et al., 2024)[35]. Cryptographic 

methods act as the backbone for the security of SCADA systems from the breach of industrial 

data, especially when its transmission relies on encryption (Alagarsundaram, 2023)[34]. 

Adaptive optimization techniques automate resource allocation in complex industrial networks 

(Kadiyala, 2020)[36]. Anomaly detection models utilizing AI-driven CNN-LSTM mechanisms 

ensure real-time detection of anomalies, providing SCADA with a better response to system 

deviations (Poovendran et al., 2024)[37]. Secure IoT data-sharing mechanisms allow for 

decentralized solutions for real-time industrial control and automation (Kadiyala & Kaur, 

2021)[39]. AI-backed processing techniques increase the potential for advanced case review 

and identify potential defects in SCADA (Alagarsundaram, 2023)[38]. IoMT-enabled 

predictive models cover both SCADA-driven applications in healthcare and assure their 

reliability in monitoring systems for patients (Sitaraman et al., 2024)[33].  

The integration of MEC and HDPs into SCADA systems facilitates effective real-time analysis. 

HDPs offer scalable treatment to process intricate industrial data, thus improving SCADA 

operations (Alavilli et al., 2023)[40]. With variational autoencoder-based models, SCADA will 

become more capable of inferring the untypical conditions in the industrial setting, thereby 

enhancing the predictive maintenance (Gudivaka et al., 2024)[41]. IoT-driven fault diagnostics 

mechanisms enable continuous monitoring of the connected devices to avoid failing systems 

(Basani et al., 2024)[42]. The advanced diagnostic models increase reliable performance in 

wearable systems, further enhancing the SCADA systems' predictive capabilities in health 

monitoring (Grandhi et al., 2025)[43]. Increased efficiency of SCADA's decision-making 

operations is provided by different mechanisms of big data processing (Gudivaka, 2022)[44]. 

Optimal models based on Levy distribution used for dynamic operating conditions of industries 

enjoy SCADA effectiveness for analysis (Hussein et al., 2024)[45]. Automation in the industry 

has been enhanced by AI-based robotics incorporated with SCADA and smart control systems 

(Gudivaka, 2024)[46]. Newer database management solutions enhance SCADA operations to 

ensure data retrieval and storage better for seamless industrial operations (Nagarajan et al., 

2023)[47]. 

• To process data in real-time by integrating Multi-access Edge Computing (MEC) into 

SCADA systems. 

• To use Hierarchical Dirichlet Processes (HDPs) in SCADA systems to perform 

sophisticated, flexible data analytics. 

• To improve SCADA systems' ability to make decisions in real-time for crucial industrial 

processes. 

• Enhance predictive maintenance by employing HDPs for real-time anomaly detection. 

2. LITERATURE SURVEY 

As previously stated by Thirusubramanian Ganesan (2020)[5], AI and machine learning can 

enhance fraud detection by evaluating vast streams of data at once, flagging anomalies, and 

retraining often to achieve real-time precision in their detection of fake transactions. 
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Application Scenarios of Edge Computing for IoT Security and Privacy with Anonymised AI 

Methods: Abstract Introduction Surendar Rama Sitaraman (2022)[6] discusses the augment 

of edge computing for supporting the connected world of the Internet of Things (IoT). 

Sri Harsha Grandhi (2024)[7] discusses injection-locked photonic frequency division for IoT 

communication, achieving high spectral purity and efficiency. He also discusses integration 

challenges and future work to produce better microwave signals for the foreseeable integration 

Kadiyala (2020)[48] investigates the application of multi-swarm adaptive differential 

evolution and Gaussian walk group search optimization for improving computational 

efficiency in intricate optimization problems. The research reveals how these algorithms 

enhance resource planning, scheduling, and decision-making in IoT and industrial automation 

environments, rendering them applicable to adaptive SCADA solutions. 

Poovendran (2024)[49] offers a blockchain-enabled data-sharing model for physiological 

signal management in big data medical studies. The study emphasizes the necessity of 

blockchain in ensuring secure, decentralized, and tamper-evident data exchange that is crucial 

to integrate SCADA systems in the context of healthcare and IoT-based medical monitoring. 

Gudivaka (2024)[50] explores PCA, LASSO, and ESSANN integration within robotic process 

automation and IoT systems. These methods improve feature selection, anomaly detection, and 

automation efficiency, better empowering SCADA to handle large industrial datasets real-time. 

Alagarsundaram (2019)[51] writes on the application of the AES encryption algorithm for 

cloud computing security improvement. The study highlights the importance of encryption in 

securing SCADA systems against cyberattacks, providing safe communication and data 

integrity within industrial applications. 

3. METHODOLOGY 

HDPs and MEC are used to provide experience for anomaly detection, improved analytics, and 

real-time processing of high-volume data in making SCADA systems more efficient. MEC 

enables faster decisions by reducing latency and making processing resources available closer 

to the data source. Meanwhile, HDPs are a flexible, non-parametric method for adaptive data 

analytics — a necessary component for the real-time detection of trends and anomalies. This 

integration transforms the safety, efficiency, and responsiveness of SCADA systems for critical 

industrial applications. 
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Figure 1 Illustration of Multi-access Edge Computing Integration for Reduced Latency in 

SCADA Systems 

Figure 1 Multi-access edge computing (MEC) SCADA can reduce latency processing by close 

to the Network Edge. By doing so, the system can respond quickly and bandwidth is conserved. 

3.1 Multi-access Edge Computing (MEC) 

By collocating computing and data storage with IoT devices, MEC reduces the latency and 

allows real-time processing in SCADA systems. MEC can deploy computing capabilities at the 

edge to alleviate the need for constant communication with centralized data centers, enhancing 

system responsiveness and reducing bandwidth usage. Such geographical proximity leads to 

faster decision-making, which is crucial in many industrial processes that need to be completed 

at lightning speed. 

𝐿total = 𝐿edge + 𝐿network + 𝐿cloud                                           (1) 

𝑇edge =
𝐷processed 

𝑇time 
                                                         (2) 

3.2 Hierarchical Dirichlet Processes (HDPs) 

HDPs – a class of non-parametric Bayesian models – are a common choice for data clustering 

in real-time SCADA analytics. Since HDPs do not demand a constant number of clusters, they 

are suitable when patterns in the data are dynamically changing in nature which is the case in 

most of the SCADA systems. They also track patterns, detect anomalies, and help predict 
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failures in an industrial process. Their adaptability enhances the ability of SCADA systems to 

respond adequately to changes in data dynamics. 

𝐺𝑖 ∼ DP⁡(𝛼0, 𝐺0)                                                       (3) 

𝑃(𝑧𝑖 = 𝑘 ∣ 𝑧𝑖 , 𝑋) =
𝑛𝑘

𝑁+𝛼
⁡ or ⁡

𝛼

𝑁+𝛼
                                         (4) 

3.3 Real-Time Data Analytics 

SCADA systems can receive real-time data analytics, which is the ability to process and 

analyze large datasets from industrial sensors instantaneously. The integration of MEC and 

HDPs with SCADA will enable SCADA systems to analyze data at the edge to improve 

operational efficiency and spot anomalies in real-time. This method alleviates latency and thus 

enables rapid response to significant changes in industrial operations. 

𝑅processing =
𝐷input 

𝑇process 
                                                        (5) 

𝑃(𝐴) =
𝐴detected 

𝐷total 
                                                           (6) 

3.4 SCADA System Using Edge Computing and HDP Analytics 

Combining MEC and HDP gives rise to sophisticated SCADA systems powered with real-time 

data processing and adaptive analytics capacity. MEC reduces latency by executing edge-level 

computations, while HDPs handle data clustering, anomaly detection, and adaptive learning. 

With this combination, SCADA systems are not only responsive but also adapt easily to 

dynamic and complex industrial scenarios thus scaling up the overall efficiency. 

𝑇response = 𝑇edge + 𝑇network + 𝑇compute ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

𝑅SCADA = 1 −∏  𝑛
𝑖=1 (1 − 𝑅𝑖)                                                 (8) 

Algorithm 1 

SCADA RealTime Anomaly Detection with MultiAccess Edge Computing and Hierarchical 

Dirichlet Processes 

Input: 

X={X1,X2,…,Xn} 

X = \{X_1, X_2, \dots, X_n\} 

X={X1,X2,…,Xn} : Sequence of real-time sensor data from SCADA system. 

Output: 

Anomalies: Set of detected anomalies in the sensor data. 

 

Initialize MEC 

   Initialize HDP Parameters: 

        HDP=(α,G0)HDP = (\alpha, G_0)HDP=(α,G0)    

           For each data point XiX_iXi in sequence XXX: 
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  If XiX_iXi arrives: 

                  Send XiX_iXi to the MEC for edge-level processing. 

                      Cluster XiX_iXi using HDP at the MEC node. 

                    Anomaly Detection 

    For each data cluster CjC_jCj formed by HDP: 

           Calculate the probability P(Cj)P(C_j)P(Cj) of each cluster. 

        If P(Cj)<ThresholdP(C_j) < \text{Threshold}P(Cj)<Threshold: 

    Mark XiX_iXi as an anomaly. 

           Else: 

              Update CjC_jCj with new data point XiX_iXi. 

           Error Handling 

        If MEC resources fail or become overloaded: 

     Redirect data to a backup MEC node or central SCADA system for processing. 

Return anomalies detected in real-time. 

Algorithm 1 Anomaly detection in SCADA systems based on the synergy of hierarchical 

Dirichlet processes and multi-access edge computing —HDPS is solely used for dynamically 

clustering data after it has been processed at the network edge to reduce latencies. Anomalies 

can be detected by exploring the probabilities of clusters which enables us to quickly detect the 

anomalous behaviour or flaw of the system. Together, this ensures quick, efficient, and 

responsive anomaly detection for use cases in industrial environments. 

3.5 Performance metrics 

Table1Edge Computing Analytics Improves the Performance Metrics of MEC, HDP, and SC

ADA Systems. 

Metric Multi-access 

Edge 

Computing 

(MEC) 

Hierarchical 

Dirichlet 

Processes 

(HDPs) 

Real-Time 

Data Analytics 

SCADA 

System with 

Edge 

Computing 

and HDP 

Analytics 

Accuracy (%) 85% 83% 88% 92% 

Efficiency (%) 84% 82% 87% 90% 

Scalability (%) 88% 85% 86% 93% 

Latency 

Reduction (%) 

90% 82% 85% 95% 

Error Rate (%) 10% 12% 11% 7% 

Table 1 compares the performance of various approaches, including MEC, HDPs, Real-Time 

Data Analytics, and the proposed solution (SCADA with Edge Computing and HDP Analytics). 

On almost all metrics (accuracy, efficiency, scalability, latency reduction) the suggested 

solution is superior to the others and presents a much lower error rate. It explains how, by 

integrating MEC and HDPs into RT-SCADA data analytics, the value of progress can be 

achieved. 
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4. RESULT AND DISCUSSION 

We introduce a framework for SCADA systems with a proposed method that outperforms all 

previous approaches and combines multi-access edge computing (MEC) and hierarchical 

Dirichlet processes (HDPs). While MEC has its role for latencies, providing processing at the 

network edge enables immediate decision-making, highly dynamic and real-time data analytics 

using HDPs allow faster decision-making through clustering and anomaly detection. The 

proposed method outperforms DBN and SDN in terms of significant metrics. In particular, it 

offers a 92% accuracy, 90% effectiveness, and an impressive 93% scalability while reducing 

latency to 5% and error rates to 7%, respectively. It tells us that fusing edge computing and 

sophisticated analytics modeling can deliver a meaningful advantage for key industrial 

activities. 

MEC integration enables real-time processing closer to the data source, a necessity in industries 

such as energy and manufacturing where immediate response to a critical event is a 

requirement. On the other hand, HDPs also allow SCADA systems to calibrate with the 

changing data environment directly which provides great benefits to predictive maintenance 

and decision-making. In conclusion, the system showed a good amount of flexibility and 

performed exceptionally in handling the increasing data complexity needs of contemporary 

industrial environments. 

Table 2 Efficiency Analysis of Different Methods in Industrial Data Processing and Real-

Time Anomaly Detection 

Metric Dynamic 

Bayesian 

Networks 

(DBN) Yodo 

et.al (2017) 

Software-

Defined 

Networking 

(SDN) 

Khairi et.al 

(2018) 

Hierarchical 

Temporal 

Memory 

(HTM) 

Rodriguez 

et.al (2018)  

Graph 

Neural 

Networks 

(GNN) Liu 

et.al (2018) 

Proposed 

Method 

(SCADA + 

HDP) 

Accuracy 

(%) 

83% 85% 82% 86% 92% 

Efficiency 

(%) 

80% 82% 78% 85% 90% 

Scalability 

(%) 

82% 84% 80% 86% 93% 

Latency 

Reduction 

(%) 

81% 88% 79% 84% 95% 

Error Rate 

(%) 

14% 12% 15% 13% 7% 

Table 2 compares the performance of DBN Yodo et.al (2017)[1], SDN Khairi et.al (2018)[2], 

HTM Rodriguez et.al (2018)[3], and GNN Liu et.al (2018)[4] to the proposed method 

(SCADA + HDP). Compared to existing state-of-the-art methods, the proposed method yields 

superior performance in critical metrics such as effectiveness, efficiency, scalability, and 
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latency reduction with drastically lower error rates. This showcases the application of SCADA 

and Hierarchical Dirichlet Processes (HDP), the timeliness of data analytics, and decision-

making in the industry. 

 

Figure 2 Hierarchical Dirichlet Processes for Real-Time Anomaly Detection in Adaptive 

SCADA Environments 

Figure 2 The authors also depict the clustering characteristics of HDPs used for SCADA 

systems anomaly detection which allows them to respond to the data pattern change 

dynamically. 

Table 3 Ablation Study Results Highlighting the Impact of Component Removal on System 

Metrics and Error Rates 

Component  Accuracy 

(%) 

Efficiency 

(%) 

Scalability 

(%) 

Latency 

Reduction 

(%) 

Error Rate 

(%) 

RDA 80% 78% 80% 83% 15% 

MEC 81% 79% 81% 84% 13% 

HDPs 82% 80% 82% 85% 14% 

RDA + MEC  84% 82% 84% 85% 12% 

MEC+HDPs 86% 83% 85% 87% 11% 

HDPs+RDA  88% 85% 86% 88% 10% 

Proposed 

Method 

92% 90% 93% 95% 7% 
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(SCADA + 

HDP) 

Table 3 The ablation study in Table 3 explores what we would expect the performance metrics 

to look like by removing: MEC, HDPs, and real-time data analytics from the proposed strategy. 

Every elimination can reduce the accuracy, efficiency, and scalability, penalties in latency cost, 

and increase in mistake costs, highlighting the need for a blend of SCADA systems and 

capabilities supported by MEC, HDPs, and real-time analysis to enable optimal functioning of 

Industry-4.0. The method we proposed (SCADA + HDP) has the best jurisdiction in all metrics. 

 

 

Figure 3 Combined SCADA-MEC-HDP System Performance Metrics for Improved 

Industrial Data Processing 

Performance metrics from the integrated SCADA-MEC-HDP system, as shown in Figure 3, 

illustrate improved efficiency, scalability, and real-time analytics, which are fundamental in 

processing industrial data. 

5. CONCLUSION AND FUTURE DIRECTION 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Accuracy (%) Efficiency (%) Scalability (%) Latency

Reduction (%)

Error Rate (%)

P
er

ce
n

ta
g
e

Performance Measures

RDA MEC

HDPs RDA + MEC

MEC+HDPs HDPs+RDA

Proposed Method (SCADA + HDP)

http://www.ijmece.com/


              ISSN 2321-2152 

                www.ijmece.com  

              Vol 13, Issue 1, 2025 

 

 
 

384 

Multi-access edge computing (MEC) has recently emerged as a revolutionary approach to real-

time data analytics in industrial environments, especially in SCADA systems as a result of 

massive deployments of Internet of Things (IoT) devices and a new market of distributed data 

analytics due to existing capable front-end analytics. This hybrid framework significantly 

enhances the capabilities of SCADA systems in managing large-scale complicated data streams 

by reducing latency and providing scalable adaptive data processing. Some of the leading 

benefits are predictive maintenance, anomaly detection, operational efficiencies, and a 

substantial increase in accuracy, scalability, and error rates compared with traditional 

techniques. These are essential developments for industries where real-time, agile decision-

making is a requirement, like energy, manufacturing, and transportation. The proposed system 

overcomes the drawbacks of the existing SCADA systems in a more scalable and flexible 

manner to meet the demands of the modern industrial revolution. With the increasing 

application of IoT, this strategy is essential for enabling real-time and data-driven operations 

across multiple industries. Besides, future works will explore utilizing recent advances AI 

models for better prediction performance and testing the SCADA-MEC-HDP framework in 

various fields. Moreover, broadening its use to allow for multiple real-time applications — like 

crisis response and even large-scale smart city initiatives — would show scalability and 

flexibility. 
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