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Abstract—Social engineering (SE) attacks remain a significant 
threat to both individuals and organizations. The advancement 
of Artificial Intelligence (AI), including diffusion models and 
large language models (LLMs), has potentially intensified these 
threats by enabling more personalized and convincing attacks. 
This survey paper categorizes SE attack mechanisms, analyzes 
their evolution, and explores methods for measuring these threats. 
It highlights the challenges in raising awareness about the risks 
of AI-enhanced SE attacks and offers insights into developing 
proactive and adaptable defense strategies. Additionally, we 
introduce a categorization of the evolving nature of AI-powered 
social engineering attacks into ”3E phases”: Enlarging, wherein 
the magnitude of attacks expands through the leverage of 
digital media; Enriching, introducing novel attack vectors and 
techniques; and Emerging, signifying the advent of novel threats 
and methods. Moreover, we emphasize the necessity for a robust 
framework to assess the risk of AI-powered SE attacks. By 
identifying and addressing gaps in existing research, we aim 
to guide future studies and encourage the development of more 
effective defenses against the growing threat of AI-powered social 
engineering. 

Index Terms—Social engineering attacks, Artificial Intelli- 
gence, AI risk quantification, Detection and defense strategies 

 

 

I. INTRODUCTION 

The rapid advancement of artificial intelligence has rev- 
olutionized various aspects of our lives, including how we 
communicate, interact, and exchange information. However, 
this technological progress has also given rise to a new and 
insidious threat: AI-powered social engineering attacks [1]. 
The 2023 Internet Crime Report from the Federal Bureau 
of Investigation (FBI) revealed that losses from tech support 
fraud, one form of AI-powered social engineering attacks, 
totaled $924.5 million in 2023, representing the third most 
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costly crime category according to Internet Crime Complaint 
Center (IC3) statistics [2]. In addition, over 21,000 com- 
plaints of business email compromise, another type of social 
engineering threat, resulted in $2.9 billion in damages [2]. 
Notably, preliminary research has demonstrated AI systems’ 
latent abilities to conduct social engineering clandestinely. 
For instance, DeepLocker [3] has demonstrated the potential 
for using AI to carry out highly targeted and covert SE 
attacks within seemingly harmless applications. Furthermore, 
automated social engineering (ASE) [1]has exacerbated this 
issue by using tools such as bots to automatically execute 
social engineering attacks. As AI systems become more so- 
phisticated, they possess the ability to manipulate human 
behavior and exploit our inherent biases and vulnerabilities, 
posing a significant risk. 

 

 
Fig. 1. Advances in AI-powered social engineering attack in the context of 
evolving social systems. 

 

Social engineering attacks is about exploiting human psy- 
chological and behavioral characteristics to bypass technical 
security measures. Generally, such attacks follow a four-step 
process: information gathering, relationship building, exploita- 
tion, and execution [4]. As information transmission media 
and social organizations evolve, SE attack medium has shifted 
from physical to digital communication [5] and now agent- 
based platforms, as shown in Fig. 1. In early physical sys- 
tem, attackers relied on direct interaction, conferring limited 
outreach. And digitization catalyzed an Enlarging phase by 
automating traditional attack techniques at scale. Advanced 
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AI models such as generative adversarial networks(GAN) and 
Reinforcement Learning(RL) algorithms heralded an Enrich- 
ing transition, empowering personalized deception through 
mechanisms like highly targeted phishing. These attacks can 
bypass traditional security measures and exploit the trust and 
goodwill of targeted individuals, luring them into divulging 
sensitive information or performing actions that compromise 
the integrity of their accounts or systems. Moreover, noval 
attack forms have emerged along with the emergence of 
intelligent agents. Currently, hacking techniques become easily 
reached. Tools like WormGPT [6] and FraudGPT enable 
automated, vast-scale attacks via LLM, employed in cyber- 
crimes including ransomware [6]. Accordingly, the SE threat 
landscape undergoes progressive 3E transformations. The first 
phase involved an enlargement of scale through digitization. 
The second phase brought an enrichment of attack vectors 
using profiling. The third phase could see the emergence 
of qualitatively different deception modes. Such modes may 
involve sophisticated artificial intelligence technologies. 

Several surveys have explored SE attacks and those enabled 
by AI [7]–[10]. Salahdine et al.(2019) [7] presents an in-depth 
survey about social engineering attacks, existing detection 
methods, and countermeasure techniques. However, the intrin- 
sic link between AI risks and SE attacks went unexamined. 
Kaloudi et al. (2020) [11] classified AI’s malicious uses in 
cyber attacks but lacked case studies illustrating real-world 
impacts The review by Blauth et al. (2022) [12] served as an 
introduction yet failed to fully capture the evolving landscape 
of AI-powered SE attacks, especially regarding LLM and 
associated emerging risks. Therefore, there exist research gaps 
in the following aspects: tracking and analyzing the rapidly 
changing landscape of AI-powered SE attacks, developing 
a robust framework for quantitatively understanding the AI 
risk, developing proactive and adaptive detection and defense 
strategies, and addressing the ethical and privacy implications 
of AI-powered SE attacks. Our paper aims to address the 
abovementioned gaps identified in the previous studies, and 
its contributions are as follows: 

• Consolidation of existing knowledge This study consol- 
idates existing AI-powered SE attack research, tracking 
their implementation mechanisms, and technical evolu- 
tion from traditional SE attack era to LLM era. 

• Insight into AI risk awareness and quantification As 
the forms of SE attacks continue to evolve, traditional 
risk evaluation methods may no longer be applicable, 
requiring the development of risk quantification mech- 
anisms to accurately measure their potential threats. We 
propose a risk quantification framework to support AI 
risk awareness and policy-making. 

• Comprehensive taxonomy of defense challenges This 
work goes beyond the scope of existing SE attack studies 
by offering a taxonomy for SE attack defense techniques. 
The taxonomy will guide future studies on developing 
more resilient defense techniques. 

The rest of this paper is organized as follows. Section 2 
outlines the literature review methodology, including search 
scope, strategy and key findings. Section 3 characterizes SE 

attack evolution through three intersecting phases: the initial 
Enlarging of scope through online proliferation, its subsequent 
Enriching of attack vectors such as deepfake and social media 
bots, and potential Emergence of novel attack modes leverag- 
ing advanced LLM. Representative SE attack techniques are 
examined within each transformational stage to contextualize 
shifting methodologies. Section 4 briefly analyzes challenges, 
discusses future prospects, and outlines promising directions 
for mitigating emerging threats posed by increasingly so- 
phisticated AI capabilities. Section 5concludes the work by 
summarizing the paper’s contributions towards systematically 
organizing extant research and anticipating future directions. 

II. SYSTEMATIC LITERATURE REVIEW METHODOLOGY 

A. Survey Scope 

This survey aims to provide a comprehensive overview 
of the current state of research on the AI-powered social 
engineering attacks. As shown in Fig. 2, the scope of this 
review includes the following key aspects: 

• Establishing a comprehensive understanding of AI- 
powered SE attack based on the in-depth examination 
of the definition, targets, mediums, methods, and specific 
scenarios to support AI risk awareness and quantification. 

• Analyzing the inherent connection between emerging AI- 
related risks and their influence on the workflow and 
impact of social engineering attacks. 

• Examining case studies that illustrate the real-world im- 
plications and consequences of AI-powered SE attacks. 
These case studies can shed light on the practical manifes- 
tations of this threat and facilitate a deeper understanding. 

• Identifying the key research challenges in tracking and 
analyzing the rapidly changing landscape of AI-powered 
SE attacks. 

Basic concepts related to SE attacks are described as the 
following: 

• Social engineering attack Social engineering attacks are 
rapidly increasing in today’s networks and are weakening 
the cybersecurity chain. They aim at manipulating indi- 
viduals and enterprises to divulge valuable and sensitive 
data in the interest of cyber criminals [7]. 

• Attack targets Attack target is the party to suffer a social 
engineering attack and bring about an attack consequence. 

• Attack medium Attack medium is the entity for the 
social interaction to implement (through which the target 
is contacted), and the substance or channel through which 
attack methods are carried out [5]. 

• Attack method Attack method is the way, manner or 
means of carrying an attack out. Synonyms such as attack 
vector, attack technique and attack approach are used to 
convey the same meaning. 

 
B. Paper collection strategy 

A rigorous search strategy was adopted to comprehensively 
survey the literature on AI-powered social engineering attacks 
and associated defenses. The following electronic databases 
were queried: IEEE Xplore, Google Scholar, ACM Digital Li- 
brary, SpringerLink, arXiv, CVPR, ScienceDirect(ELSEVIER) 
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Fig. 2. Survey scope: establishing understanding of SE attack evolution, analyzing connections to emerging AI risks and examining real-world case studies. 

 

and Web of Science. Relevant literature from 2000 to present 
totals 473 papers. The keywords we used are as follows: 

• “social engineering”/“fake content”/“information manip- 
ulation” 

• “AI for social engineering”/“LLM for social engineering” 
• “social engineering detection”/ “fake content detec- 

tion”/“social engineering defense challenges” 

 
C. Findings 

 

 

 
Fig. 3. Keyword co-occurrence analysis in social engineering research. 

 

We perform a co-occurrence analysis of keywords in the 
literature using the VOSviewer software [13], as depicted in 
Fig. 3. The keywords exhibit a clear temporal transition trend, 
which can be categorized into as follows: 

• Red terms focus on AI techniques (artificial intelligence, 
machine learning, big data) and application domains 
(decision making, internet, security, privacy) that are 
relevant to SE attacks. This reflects increasing exploration 
of advanced approaches to automate and enhance attack 
capabilities. 

• Blue terms involve core technological research areas 
(security, architecture, IoT, authentication) that are being 
investigated to defend against adaptive AI threats. This 

points to a direction of building robust and reliable 
systems considering emerging risks. 

• Green terms center on specific attack methodologies 
(deep learning, adversarial examples, backdoor attacks, 
feature extraction, explainable AI) that leverage loop- 
holes in AI models. Researchers examine vulnerabilities 
and propose technical solutions to enhance model trans- 
parency and robustness. 

• Yellow keywords highlight computational techniques (at- 
tack detection, cyber security) being developed for timely 
identification of SE activity at scale. 

By analyzing trends across these focus areas, this research 
aims to provide a holistic overview of the evolving SE threat 
landscape in relation to progressing digital technologies. It also 
seeks to identify open challenges and outline opportunities 
for developing responsible, multi-pronged defensive solutions 
through rigorous interdisciplinary collaborations. This work 
helps guide secure, trustworthy integration of advancing com- 
putational capabilities with social systems. 

 
III. RESEARCH PROGRESS 

 

This section characterizes the history and current state 
of social engineering attack methods and scenarios. The 
evolution of social engineering attacks has seen significant 
3E trends(enlarging, enriching and emerging) parallel to ad- 
vances in AI techniques across three phases of social system, 
as shown in Fig. 4. Early SE approaches primarily relied 
on interpersonal interaction, leveraging human psychology 
and lacking technological augmentation. With emerging data- 
driven methodologies and artificial intelligence, SE tactics 
have grown increasingly sophisticated. As cyber connectivity 
emerged via online social platforms, SE attacks manifested an 
Enlarging trend, scaling traditional human-driven techniques 
to reach broader targets through automation. Subsequently, SE 
attacks began an Enriching process by enabling personalized, 
modularized campaigns exploiting networked user dynamics. 
At the latest stage of sophisticated autonomous agent tech- 
nologies, their involvement in manipulation shows signs of 
Emerging novel forms of assault. 
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Fig. 4. The 3E evolving landscapes of social engineering parallel to AI 
techniques across three phases of social system. 

 

 

To contextualize the technical progression, we analyze SE 
techniques through two developmental stages: (1) human- 
based traditional SE, (2) AI-empowered SE. The literature 
are analyzed according to major methodological shifts in SE 
attacks that are commensurate with enabling technological 
advances, particularly those related to AI. By benchmarking 
methodological shifts, our analysis contextualizes the rising 
sophistication of SE commensurate with enabling technolo- 
gies. The outlined historical trajectory and analytical frame- 
work serve to both retrospectively organize existing works and 
prospectively anticipate future developments. 

 
A. Evolving landscapes of social engineering: from enlarge- 

ment to emergence 

A common taxonomy in literature is to divide social engi- 
neering attacks into human-based and computer-based [14]– 
[16]. In human-based attacks, the attacker executes the attack 
in person by interacting with the target to gather desired 
information. Thus, they can only influence a limited number 
of victims. 

1) Human-based attacks: Traditional social engineering 

techniques: This section characterizes traditional social en- 
gineering techniques reliant on human interaction and ma- 
nipulation to deceive targets and obtain sensitive information. 
Human-based attacks are performed through relationships with 
the victims to play on their psychology and emotion [7].These 
attacks are the most dangerous and successful attacks as they 
involve human interactions. Examples of these attacks are 
pretexting, phishing, vishing, impersonation, and others: 

1) Pretexting Pretexting fabricates scenarios pressuring 
disclosure under false pretenses, commonly targeting 
client data from industries including finance and utili- 
ties. [17]. During pretexting, the attack actor will often 
impersonate a client or a high-level employee of the 
targeted organization. 

2) Phishing Attackers send spoofed emails appearing to 
be from legitimate organizations or individuals, with 
malicious links or soliciting sensitive information. Phish- 
ing emails often impersonate banks, e-payment services, 

social media platforms requesting credentials like user- 
names, passwords, credit card numbers by clicking on 
included links [18]. 

3) Vishing Attackers pretend to be representatives of le- 
gitimate organizations over phone calls, attempting to 
fraudulently obtain personal information or sensitive 
data from targets [19]. They may claim to be from banks, 
government agencies, IT support teams etc. and lever- 
age social engineering to trick targets into disclosing 
passwords, account numbers, social security numbers for 
fraudulent purposes. 

4) Impersonation Impersonation assumes false identities. 
Traditionally, impersonators take on identities of man- 
agement, staff or clients. The goal is to infiltrate net- 
works or acquire unauthorized access to data by estab- 
lishing rapport [7]. 

5) Others Other techniques include baiting, which tempts 
disclosure through enticing offers. Tailgating physically 
infiltrates access-controlled areas by trailing authorized 
personnel unnoticed. Quid pro quo proposes service-for- 
data exchanges, commonly technical support imperson- 
ating IT staff. 

The foundations of traditional social engineering techniques 
were examined in early literature. Twitchell (2009) [20] out- 
lined typical social engineering tactics in the pre-computing 
era like confidence schemes, impersonation and examined 
applicable countermeasures. Hadnagy (2010) [21]introduced 
the art of social engineering and common techniques. Lohani 
(2019) [22]introduced the concept of social engineering, its 
goals, methods like pretexting and psychological manipulation, 
establishing ”hacking the human” as the core vector. This 
section introduces foundational techniques established prior to 
computer-based SE attacks, laying indispensable groundwork 
for subsequent exploration. 

2) Transition to computer-based attacks: Automation and 

scalability: As cyber connectivity emerged via online social 
platforms, SE attacks manifested an ”Enlarging” trend, scaling 
traditional human-driven techniques to reach broader targets 
through automation. 

a) Enlarging: scaling attack targets through online 

medium: With the rise of Internet and social networks, so- 
cial engineering attacks began leveraging online platforms to 
widen their reach. Perpetrators induced victims to disclose 
personal or financial data via fabricated identities and phishing 
emails. Attack medium diversified to include but not limited to 
emails, instant messages and social media platforms. With the 
rapid development of AI, social engineering attacks demon- 
strated more precise and covert characteristics. Leveraging big 
data analytics, attackers designed more effective inducement 
strategies by better understanding victims’ behavioral patterns. 

Several studies have explored the threats of SE attacks 
,especially the cybersecurity. Murphy et al.(2007) [23] out- 
lined threats posed by phishing, pharming and vishing to 
cybersecurity. Park and Seo (2007) [24]studied certification 
approaches to preventing information leakage in phishing, 
vishing and smishing attacks. Alazri (2015) [25] discussed 
social engineering paradigms and challenges in the era of in- 
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formation revolution. Mattera et al.(2021) [26]predicted social 
engineering would become a major information security threat. 

As digital networks and vast data repositories became 
ubiquitous, new opportunities emerged for social engineers to 
refine traditional techniques through data-driven customization 
and scale. 

1) Pretexting With access to comprehensive personal pro- 
files and relationships online, pretexting attackers can 
craft highly tailored fabricated pretenses likely to elicit 
information without raising suspicion. Tricking victims 
becomes easier as identities and interests proliferate in 
digital dossiers. However, such empowerment also raises 
complex ethical dilemmas around privacy and consent. 
According to Zotina (2022) [27], criminals employ 
varied pretexting methods in criminal investigations. 
However, pretexting poses challenges regarding privacy, 
ethics, and consent [17], [28]. Pretexting circumvents 
consent requirements by eliciting information through 
fabricated pretenses, raising complex questions around 
privacy, autonomy, and information control. 

2) Phishing 

Entering the digital era, phishing benefited immensely 
from massive transaction and social media records re- 
vealing contextual insights into targets. Malicious ac- 
tors could craft hyper-personalized phishing lures that 
evaded suspicion by mimicking familiar organizations 
and leveraging open source data to establish rapport. 
Sheng et al.(2009) [29] studied the effectiveness of 
phishing blacklists in detecting phishing websites. They 
analyzed features of websites in blacklists and compared 
them with benign websites to identify differences that 
blacklisting techniques rely on. Desolda et al.(2021) [18] 
conducted a systematic literature review to analyze hu- 
man factors in phishing attacks. They identified technical 
and socio-technical factors that influence individual sus- 
ceptibility to phishing, including education, personality 
traits and deception techniques. 

3) Vishing 

As social networking increasingly transpires in digital 
medium, more personal information is being collected 
and misused. The growing availability of individual 
data online has facilitated socially engineered attacks 
leveraging people’s information. 
Research on social engineering techniques, particularly 
vishing, has continued to deepen. Jones et al. (2021) [30] 
studied the persuasion principles used by social engi- 
neers in carrying out vishing attacks, finding that se- 
lectively using vague or sensitive information can more 
effectively persuade victims. Maseno (2017) [31] pro- 
posed a model for detecting mobile user vishing attacks. 
Armstrong et al. (2023) [32] compared perceptions of 
caller honesty in vishing attacks using either sensitive 
or innocuous requests. Ashfaq et al. (2024) [33] re- 
viewed vishing attacks and summarized prevention and 
mitigation techniques. 

4) Impersonation 

Burgeoning digital dossiers detailing identities, relation- 

ships and activities have empowered impersonators to 
simulate authentic personas more convincingly. Tu et al. 
(2021) [34] proposed a reinforcement learning model to 
detect impersonation attacks in device-to-device com- 
munications for future networks. Sheng et al.(2018) [35] 
analyzed security of a certificateless encryption scheme 
and found opportunities for impersonation attacks by ad- 
versaries reconstructing public keys from leaked system 
parameters. 

b) Enriching: expanding attack vectors through deep 

learning techniques: With the rise of deep learning, assaults 
began an enriching diversification through increasingly spe- 
cialized model applications. Technological developments have 
enabled the automation and large-scale deployment of social 
engineering attacks. 

Personalized attacks via user profiling Latent feature 
models powered by large-scale user data allow profiling in- 

terests, preferences and behaviors for hyper-targeted phishing. 
Synthetic media generation using Generative adversarial 

networks GANs are a powerful generative model consisting of 
a generator and discriminator that adversarially train together 
to enable the generator to produce convincing fake samples. 
Generative adversarial networks synthesize convincing fake 
multimedia, including deepfakes that realistically impersonate 

identities. 

Deceptive content via natural language processing mod- 

els(NLP) NLP techniques have been widely applied to gen- 
erate deceptive contents, including fraudulent text generation 
and semantic manipulation. Neural language models produce 
deceptive or manipulated text at scale. Automated writing 
masks artifices under layers of human-like language. 

Optimized interactions through reinforcement learning 

Reinforcement learning trains chatbots via feedback to contin- 
ually refine social deceptions over multiple episodes. Dialog 
systems maximize yields by learning optimal engagement 
strategies. 

Collectively, advances in AI have supercharged social en- 
gineering’s once human-constrained abilities and enabled new 
social engineering attack methods using emerging vectors like 
deepfakes, virtual assistants, social media bots and chatbots. 

Deepfake 

Deepfake technology leverages generative adversarial net- 
works and other deep learning models to replace the features 
in an image or video with those of another image, generating 
highly realistic fake content. The advancement of deepfake 
technology has made the creation of high-quality fake media 
simple and inexpensive, further exacerbating its application in 
social engineering attacks. 

Recent advances in machine learning have enabled the emer- 
gence of deepfakes, hyper-realistic digital videos manipulated 
using artificial intelligence to depict individuals engaging in 
fabricated acts (Westerlund, (2019) [36]; Albahar and Almalki, 
(2019) [37]). Deepfakes pose societal risks by impairing the 
authenticity of visual evidence and disseminating manipulated 
content (Pantserev, (2020) [38]; Katarya and Lal, (2020) [39]). 
Deepfakes threaten news reliability, national security, and 
individual privacy by enabling propaganda and impersonation. 
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Studies [38]–[40]analyzed the threats of generating hyper- 
realistic audio-visual deepfake content for the purpose of ma- 
nipulating public opinion and undermining political stability. 
Additionally, existing studies [41], [42] suggested deepfake 
technology elevates information security risks by enabling the 
fabrication of news and personal details, affecting public judg- 
ment formation. Karasavva et al.(2021) [43] discussed the im- 
pacts of deepfake pornography on privacy and gender equality, 
transforming it into a new means of online harassment. Langa 
et al.(2021) [44] explored legislative challenges as deepfake 
content is difficult to verify, bringing new regulatory issues 
with emerging attack vectors. Galyashina et al.(2022) [45] 
reported the usage of deepfake in megascience projects to 
potentially deliver malware or exfiltrate confidential data via 
social manipulation. 

Overall, deepfake empowers SE attacks in three major ways. 
Firstly, it enables the generation of fabricated information 
in more persuasive audio-visual forms to interfere public 
opinion steering. Secondly,it increases content stealthiness 
and expanding the scope of unsuspecting users under attack, 
exacerbating online harassment issues; Thirdly, it challenge 
detection and governance with traditional methods due to the 
deceptive nature, posing novel threats for defensive work. 
Deepfake was identified as an emerging frontier in SE attacks, 
signifying the importance of researching its societal risks from 
technological and policy perspectives. 

Virtual assistant 

Virtual assistants (VAs), enabled by advances in natural 
language processing and speech recognition technologies, have 
gained widespread adoption in recent years for assisting users 
with daily tasks via conversational interfaces [46]. While offer- 
ing frictionless interaction, VAs also present emerging security 
and privacy concerns due to their architecture which relies on 
cloud computing platforms to power functionality [47]. 

Several studies have demonstrated successful malicious 
attacks targeting VAs [47], [48], indicating their increasing 
appeal to threat actors. Zhang et al.(2019) [49] analyzed secu- 
rity risks of third-party skills on VA platforms and proposed 
mitigation approaches. Risks included malicious skills bypass- 
ing review processes. An et al.(2018) [50] applied malware 
detection techniques to identify anomalous behavior in VAs 
indicative of potential compromise. More worryingly, attacks 
are evolving to employ remote vectors and more sophisticated 
techniques. At the same time, personal data extraction from 
unsecured VAs has been shown feasible [51]. Evaluations of 
key data protection legislation also found limited protections 
for VA users . 

Researchers have also summarized the key security and 
privacy challenges facing VAs, such as concerns around data 
protection and unwanted triggering [51]. Regarding system 
security, vulnerabilities have been exposed in third-party appli- 
cation review processes enabling malicious skill approval [49]. 
Dreyling et al. (2021) [52] conducted a cyber risk analysis 
of a government VA digital service using the FAIR model 
to identify vulnerabilities. Kumar et al.(2021) [53]introduced 
a computational trust model based on AI to evaluate a VA’s 
trustworthiness. Applications of VAs for security were pro- 
posed. Pandit et al.(2022) [54], [55] proposed leveraging a 

virtual assistant to mediate user interaction with communica- 
tion systems like phones to combat robocalls and voice spam 
more effectively. 

In summary, as VAs gather increasing user data within 
immature regulatory landscapes, security and privacy remain 
open challenges deserving further interdisciplinary explo- 
ration. Robust defenses and well-informed user comprehension 
will be critical to realising VAs’ societal potential while 
mitigating associated risks. 

Social media bots 

Social media platforms host large numbers of automated 
accounts, or ”bots”, which utilize computer scripts to emulate 
human behaviors and manipulate discussions. Social media 
bots have increasingly garnered research attention due to their 
potential to distort online conversations and public opinions 
at scale. Several studies have employed literature reviews and 
empirical analyses to characterize bot activities. Notable work 
by Ferrara(2015) [56] summarized the technical and societal 
challenges posed by bot misuse, such as spreading misin- 
formation, opinion manipulation, and coordinated inauthentic 
campaigns. Social engineering attacks enabled by social media 
bots can broadly be categorized into three classes based on 
prior empirical work: information manipulation, emotional 
influence, and opinion control. 

Information manipulation attacks aiming to sway public 
opinions through disseminating falsehoods have been docu- 
mented. Ferrara et al.(2020) [57] analyzed coordinated bot 
campaigns on Twitter during the 2020 US elections, finding 
evidence of coordination albeit on a smaller scale than humans. 
Chang et al. [58]reviewed the role of bots, misinformation, 
and platform interventions during COVID-19 through 2020. 

Computational modeling has demonstrated emotional in- 
fluence attacks that leverage bots to amplify user emotions. 
Wagner et al. (2012) [59] showed through agent-based simu- 
lation that bots targeting emotional content can increase anger 
online. Their experiments showed that bots targeting emotional 
content can amplify anger in online discussions. Weng and 
Lin (2022) [60] conducted social network analyses of Twitter 
data coinciding with peaks in the Wuhan lab leak conspiracy, 
finding bot-driven emotional manipulation. 

At large scales, opinion control attacks facilitating social 
fraud have been exhibited, like Paquet-Clouston et al.(2017) 
[61] revelation of IoT botnet manipulation on Twitter. They 
demonstrated how an IoT botnet conducted social network 
manipulation on Twitter through social media fraud services 
selling artificial likes, followers and views. Inventories of 
organized campaigns were provided [62]. Deb et al.(2019) [63] 
conducted an analysis of social media data from the 2018 US 
midterm elections to detect potential election manipulation. 

Phishing attacks guided by bot taxonomies distinguishing 
commercial and surveillance bots were defined [64]. Gorwa 
and Guilbeault [64] provided a typology of bots to guide 
related research and policy-making. They identified five main 
bot types based on function and intent, including commercial 
bots, political bots, surveillance bots, spam bots, and deep- 
fakes/synthetic media bots. 

Studies have also advanced detection and defenses, such 
as Orabi et al.(2020) [65] summarization of detection tech- 
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niques and Benigni et al.(2019) [66] coordinated behavior 
identification framework. Orabi et al.(2020) [65]performed 
a systematic literature review of bot detection techniques 
on social media. They analyzed 55 papers and identified 
three main categories of approaches: content-based, graph- 
based, and hybrid methods. Content-based methods analyze 
profile attributes, linguistic features, and temporal patterns 
in posts. Graph-based techniques leverage social connections 
and interaction networks. Hybrid models integrate multiple 
information sources. Benigni et al.(2019) [66] proposed a 
framework called Bot-ivistm to assess information manipula- 
tion by social bots through network and community structure 
analytics. They demonstrated its application to understand 
coordinated campaigns on Twitter and Gab. Bradshaw and 
Howard (2017) [62] provided a global inventory of organized 
social media manipulation campaigns identified through open- 
source information and technical data. This work provides a 
basis for understanding prevalent SE attack patterns leveraging 
social bots through empirical analyses. 

In summary, the existing studies have advanced the un- 
derstanding of bot behaviors through systematic analyses and 
empirical case studies. Detection and mitigation of bots and 
bot-enabled online harms remain a challenging open problem 
with many socio-technical considerations. Future research 
directions include tracking evolving bot strategies, modeling 
information flows in hybrid human-bot networks, and devel- 
oping responsible governance frameworks. 

Chatbot 

Chatbots can be manipulated to provide false information, 
leading users to click on links containing malware or fraud- 
ulent websites. Additionally, insecure AI chatbots may be 
used to spread misinformation, manipulate public discourse, 
and even steal users’ personal privacy. Existing study has 
[67] reviewed chatbot security and privacy challenges arising 
from their widespread use in personal assistant scenarios. 
Technical issues like data leaks, functional attacks and lack of 
accountability were covered. Chatbot-enabled SE attacks can 
broadly be categorized into four types based on the literature. 
Information manipulation attacks aim to influence public 
opinions and viewpoints through misleading or spreading mis- 
information via chatbots, as explored in experiments testing 

political influence and analyses of potential manipulation risks. 
Huang-Isherwood et al.(2024) [68] conducted an experiment 
testing how chatbot manipulations can influence people’s 

political self-concepts. Their results provided guidance on bot 
manipulation detection heuristics. Carroll et al.(2023) [69] 
characterized potential manipulation risks from AI conversa- 
tional systems and mitigation approaches. Rayhan [70] dis- 
cussed chatbot manipulation techniques from an adversarial 
perspective. 

Behavioral impact attacks attempt to affect user psychology 
and conduct following chatbot interactions through examining 
self-disclosure effects on mental models and blame attribution. 
Ho et al.(2018) [71] investigated the psychological, relational 
and emotional effects of self-disclosure after conversations 
with a chatbot. Crolic et al.(2022) [72]explored how an- 
thropomorphism and anger in customer-chatbot interactions 
can influence blame attribution through empirical studies. De 

Gennaro et al.(2020) [73] evaluated an empathic chatbot’s 
effectiveness in combating adverse social exclusion effects on 
mood. 

Phishing attacks utilize chatbots impersonating enterprises 
or individuals for online scams, with proposed defenses against 
social networking phishing. Yoo and Cho (2022) [74] pro- 
posed an intelligent chatbot security assistant (ICSA) using 
text CNN and multi-phase defenses to protect against SNS 
phishing attacks. 

Service impact attacks seek to diminish service quality or 
disrupt normal operations of businesses through chatbot inter- 
actions, addressing negative consumer perceptions. Roy and 
Naidoo (2021) [75] assessed the impact of chatbot presentation 
styles and time orientation on effectiveness in business con- 
texts. Mozafari et al. (2021) [76] leveraged selective chatbot 
self-disclosure to mitigate negative user perceptions in differ- 
ent service scenarios. Shumanov and Johnson (2021) [77] 
explored personalizing chatbot conversations for enhanced 
experience. 

In summary, existing studies have empirically analyzed 
key technical, behavioral and application factors regarding 
chatbot security, effectiveness and potential manipulation risks, 
providing guidance for responsible chatbot design and deploy- 
ment. Future work can consider evolving chatbot adversarial 
behaviors and large-scale impact assessments. 

c) Emerging: empowering novel attack techniques 

through large language models : Recently, involvement of 
LLM portends the ”Emerging” of qualitatively novel assault 
forms. Systems demonstrating generative language proficiency 
intrinsically risks. By innovating in model architectures, train- 
ing optimization, learning paradigms and other aspects, LLM 
built upon the foundation of neural networks and leveraged 
computational resources and big data advantages to break 
through the limitations of traditional neural networks in terms 
of scale, learning capability and broad applicability[78], [79]. 
The key technological breakthroughs include: 

• In model architectures, transformer self-attention and 
other mechanisms were used to design larger-scale mod- 
els with parameter sizes usually in the millions or even 
over billions, such as GPT-3’s 1.75 billion parameters. 
Such large models enable generating hyper-realistic de- 
ceptive contents at scale. 

• In training optimization, the pre-training and fine-tuning 
transfer learning paradigm was realized to promote cross- 
task learning. GANs and other generative models were 
trained with reinforcement learning to gain the ability of 
generating new content, including fake identities, dialogs 
or documents for social manipulation. 

• In learning paradigms, large-scale self-supervised learn- 
ing was conducted to excavate deep representations in 
corpora. Prompting engineering was introduced to im- 
prove interactive learning flexibility and efficiency, fa- 
cilitating the generation of deceptive but human-like 
responses for social engineering attacks. 

LLM systems may enable new forms of social engineering 
attacks if vulnerabilities are introduced during the development 
lifecycle. Key stages include data preparation, training, deploy- 
ment, application, and updating. At each stage, vulnerabilities 
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could be intentionally or unintentionally created that amplify 
social harms, as outlined in Tab.I. 

 
TABLE I 

LLM ENABLED SE ATTACK TECHNIQUES 

bias types, such as gender, racial, and ideological biases. Ray 
et al.(2023) [86] provided a holistic introduction to ChatGPT, 
including its key challenges of biases and ethical concerns and 
future prospects. 

Model Training 

Sub-stages How to Empower 
Social Attacks 

Enhancing 
Techniques 

Reference 
During model training stage of LLMs, there exist two pri- 

mary avenues through which adversarial attacks may facilitate 
Data 
Collection 

Empower 
building trust 

Data Poisoning At- [80]–[83] social engineering at scale via LLMs. Firstly, model poisoning 
 tack  attacks wherein adversaries strategically introduce corrupted 

and 
Preparation 

and manipulating 
information 

Biases in Data Prepa- 
ration and Annota- 

[84]–[90] 
training examples to subtly bias model representations. For 

 tions  instance, poisoning aimed at associating typically neutral 
Model 
Training 

Automating 
large-scale 
attacks 

Model Poisoning At- 
tack 
Data  Reconstruction 

[81], [91] 

[92]–[94] 

topics with fear, uncertainty or deception, potentially enabling 
generated content to similarly manipulate without detection. 

 Attack  Secondly, data reconstruction attacks whereby identities within 

Model 
Deployment 

Automating 
large-scale 
attacks 

Adversarial Examples [95]–[98] 

Jailbreak [99]–[103] 

anonymized datasets used for LLM training become identi- 
fiable, exposing privacy-sensitive attributes. Such techniques 

 
 
 

 
Model 
Application 

Extracting 
privacy data 

 

 
Information 
manipulation 

Extracting 
privacy data 

 
 
 
 

 
attacks 

Data Theft from AI 
Memory 
Membership 
Inference Attack 

Trustworthiness 
of AIGC 

Privacy Leakage in 
Interacting with AI 

[80], [104], 
[105] 
[106]–[108] 

 
[109]–[112] 

 
[113], [114] 

could theoretically power population-scale impersonation or 
customized misinformation diffusion through personalized 
synthesized profiles. 

Data reconstruction attacks leverage the knowledge unin- 
tentionally learned by the models to reconstruct parts or the 
whole training data, leading to privacy leakage [92], [128]. By 
exploiting the hidden representations encoded in the models, 
reconstruction attacks can extract private information from the 
training samples. Elmahdy et al.(2023) [92] proposed a novel 
”Mix And Match” attack that can reconstruct the training data 
used for text classification models and highlighted the privacy 
risks associated with data reconstruction attacks. Wang et 
al.(2024) [93] investigated the problem of training data leakage 
in open-source large language models. Li et al.(2024) [94] 
introduced a powerful attack called ”DrAttack” that can bypass 
the safety mechanisms of large language models by decom- 

Data Collection and Preparation 

During data collection and preparation, there exist attack 
methods through which training regimes could potentially 
enable wide-scale social engineering by LLMs. Firstly, data 
poisoning attacks, where adversarially manipulated examples 
introduce biases by exposing models to simulated techniques 
like phishing messages without context or fact-checking. 
Secondly, annotation biases, as human annotators influenced 
by preconceptions may misclassify ”successful” manipulation 
strategies observed online, normalizing insincere persuasive 
styles. 

Data poisoning techniques have been explored as potential 
attacks on language models. Poisoned training data could 
induce biases or toxicity within models [81]. Biased samples 
could steer models toward harming groups. Existing studies 
profiled ChatGPT limitations [86]and challenges of prepro- 
cessing with generative systems [85]. Zhang et al.(2024) [81] 
analyzed how retrieval poisoning allows compromising LLMs 
via legitimate-appearing but manipulated outputs from pow- 
ered applications.He et al.(2024) [83] explored data poisoning 
attacks against in-context learning. Yang et al.(2024) [82] 
demonstrated backdoor injection enabling reasoning manip- 
ulation or output controls. 

Early research explored bias origins [85] and how attacks 
inject backdoors [82]. Navigli et al.(2023) [84] explored the 
root causes of LLM biases and cataloged a range of specific 

posing and reconstructing prompts, leading to unintended and 
potentially harmful outputs. 

For model poisoning attacks, adversaries subtly manipulate 
the models’ internal parameters through gradient information 
or other insights gained from the training process [81], [91]. 
This is typically achieved by inserting backdoors or biases 
during model updating. Zou et al.(2024) [91] explored a new 
type of attack ”knowledge poisoning” that targets retrieval- 
augmented generation in large language models, leading to 
harmful outputs during text generation. 

Model Deployment 

At the model deployment stage, several attack techniques 
have been shown to enable novel forms of social engineering. 
Specifically, adversarial examples pose risks, as judicious 
inputs could induce models to generate misleading outputs 
propagating disinformation virally. Jailbreaking attacks at- 
tempt to circumvent access controls and coerce deployed 
models into disclosing sensitive knowledge or manipulating 
unrelated tasks. Data extraction from model memory could 
aid personalized deepfakes or precision social engineering by 
reconstructing attributes of individuals in proprietary train- 
ing datasets. Membership inference attacks aim to determine 
dataset representation of specific individuals, potentially en- 
abling targeted social attacks. 

Adversarial examples research demonstrates how perturba- 
tions can mislead models into generating deceptive or harmful 

Automating 
large-scale 

 attacks  

Prompt Injection 

 
Code injection attack 

[115]–[119] 

 
[120], [121] 

Model Automating 

updating large-scale 

Parameter stealing at- 
tack 
Edge node intrusion 

[122], [123] 

[124] 

 Update mechanism 
cracking 
Backdoor 

[125] 

[126], [127] 

 implantation  
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outputs that could influence human opinions or decisions. 
Raina et al.(2024) [95] investigated the robustness of us- 
ing LLMs as judges for zero-shot assessment tasks. Zou et 
al.(2023) [96] proposed universal and transferable adversarial 
attacks that can be applied to aligned language models. Yao 
et al.(2023) [97] demonstrated that random token prompts 
can elicit hallucinations from LLMs, suggesting hallucinations 
may be a form of adversarial examples. Li et al.(2024) [98] in- 
troduced a flow-based multi-modal adversarial attack targeting 
video-based LLMs. 

Other works have examined ”jailbreaking” attacks, whereby 
an adversary manipulates an LLM into generating undesirable 
content without authorization. Chu et al.(2024) [99] provided a 
comprehensive assessment of jailbreak attacks against LLMs. 
Xu et al.(2024) [100] conducted a comprehensive study on 
LLM jailbreak attacks and defense techniques. Chang et 
al.(2024) [101] introduced an indirect jailbreak attack on 
LLMs using a guessing game with implicit clues. Huang 
et al.(2023) [102] explored a catastrophic jailbreak attack 
on open-source LLMs by exploiting the generation process. 
Despite efforts to align LLMs with human values, widely used 
LLMs such as GPT, Llama, Claude, and PaLM are susceptible 
to jailbreaking attacks, wherein an adversary fools a targeted 
LLM into generating objectionable content. 

Additional research has profiled privacy risks, such as data 
theft [80], [105] or enabling membership inference attacks. For 
example, Greshake et al. (2023) [104], by strategically inject- 
ing prompts into data likely to be retrieved during inference, 
adversaries can exploit applications to perform arbitrary code 
execution, data theft, and manipulate functionality. Member- 
ship inference is able to reveal privacy dataset membership in- 
formation, and thereby judge personal preferences, behaviors, 
etc [107]. Fu et al. (2023) [106] proposed a new membership 
inference attack, showing privacy leakage remains a challenge 
for LLMs trained on sensitive data. Duan et al. (2024) [108] 
evaluated whether traditional membership inference attacks 
work on pre-training data of large language models. 

Model Application 

During the application phase of LLM, several emerging 
attack methods pose risks for enabling advanced SE attacks. 
LLMs’ proficiency in generating synthetic yet authentic- 
sounding textual outputs threatens to undermine public dis- 
course. By propagating machine-generated misinformation in- 
visible to most users, adversaries could covertly manipulate 
opinions and narratives at scale. Secondly, privacy leakage vul- 
nerabilities in conversational AI systems endanger individuals 
by potentially revealing sensitive attributes via response pro- 
filing. Finally, the malleability of generative models’ outputs 
through priming language cues enables subtle yet powerful 
result manipulation. 

Several studies have explored both opportunities and risks 
associated with deploying advanced generative models like 
LLMs. To undermine trust in AI-generated texts, adversaries 
subtly implant inaccuracies or misleading claims within model 
outputs to manipulate public discourses and steer user per- 
ceptions [109]. Several studies have explored the emerging 
issues surrounding AI-generated content (AIGC). Wang et 
al.(2023) [129] provided an overview of AIGC, including its 

development history and applications. Challenges in ensuring 
information quality and mitigating biases were also discussed. 
Basyoni and Qadir [130] investigated AIGC’s implications for 
public safety through a case study. Grimme et al.(2023) [131] 
also studied how LLMs may be utilized to generate synthetic 
yet coordinated disinformation campaigns on social platforms, 
and proposed techniques to trace the digital fingerprints of 
such machine-driven messaging. 

By eliciting private attributes from conversations, privacy 
leakage attacks emerge through response analysis during nat- 
ural interactions. Personal details may also be extracted for 

unauthorized secondary purposes [113]. Liu et al.(2023) [132] 
analyzed risks of AIGC in market regulation, such as informa- 
tion disclosure and attribute inference. Chen and Tian [133] 
took a Marxist political economy perspective to review AIGC’s 
challenges, including data legitimacy, biases, incentive mech- 
anisms and learning behavior oversight. Xuan [134], [135] 
summarized AIGC risks in the judicial system, involving 
information authenticity and interpretable scrutiny of models. 
Key issues included data sourcing legality, biases, unfairness 
from incentivization, labeling errors, and impacts on artificial 
general and superintelligence. Collectively, these studies ex- 
plored emerging problems from AIGC application, focusing 
on domains like public safety, market rules and jurisprudence. 
Prompt injection techniques pose risks by enabling the 
manipulation of model outputs and downstream audiences. 
Toxic, harmful or propagandistic prompts have been shown 
to guide text generation in LLMs [117], [118]. Several works 
have sought to systematically characterize these attacks. Liu 
et al.(2023) [119] proposed a framework for analyzing prompt 
injections and defenses. Liu et al.(2024) [115] introduced an 
automated gradient-based method for generating highly effec- 
tive universal injections requiring just five training samples, 
outperforming baselines. Pasquini et al.(2024) [116] defined 
”Neural Execs” - autonomously generated execution triggers 
bypassing protections via flexibility. In general, prompt attacks 

work by converting adversarial textual content into an injection 
prompt that induces LLMs to output adversarial samples 
matching an attack goal (Liu et al., 2023). Effective prompts 
typically comprise the original input or label, a task illustrating 
a semantically preserving perturbation, and attack guidance 
modifying the input at character, word and sentence levels. 

Additionally, several malicious applications like WormGPT 
and FraudGPT for automating and scaling malicious activities 
also show the degree of weaponization of LLM technology. 
FraudGPT gained rapid adoption by simplifying complex 
hacking techniques into an automated service that even non- 
experts could easily employ for activities such as writing 
malicious code, creating undetectable malware, and crafting 
convincing phishing emails. Compared to manual research, 
LLM greatly reduces the time needed to discover vulnerabil- 
ities, collect credential data from victims, learn new hacking 
tools, and master sophisticated cybercrimes. 

At scale, automatable LLMs have reduced barriers to adver- 
sarially phishing, deceiving or advertising without authoriza- 
tion - highlighting the pressing need for robustness evaluations 
and targeted defenses against emergent sociotechnical threats. 
Continued rigorous study remains crucial to holistically un- 
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derstand and address model subversion risks. 
Model updating 

Model updating presents security vulnerabilities that may 
be exploited to facilitate large-scale social engineering efforts. 
During maintenance and revision cycles, key attack surfaces 
emerge. For example, code injection attacks enabling adver- 
saries to clandestinely alter update codepayloads, potentially 
implanting covert backdoors or malware. This modifies output 
control to propagate manipulated content and spread misinfor- 
mation. Parameter stealing attacks extracting private revision 
information could reveal sensitivedomain knowledge embed- 
ded within the model. Compromised personal data might be 
leveraged to reconstruct impersonation models for precision- 
targeted influence operations. Edge node intrusions granting 
unauthorized access to remotely deployed instances provide 
vectors formanipulating outputs at scale or extracting user 
data with amplified sociotechnical impacts. Circumventing 
authentication through update mechanism cracking risks broad 
dissemination offalsified narratives aimed at swaying perspec- 
tives on issues of societal import. Backdoor implantation dur- 
ing revision cycles potentially introduces surreptitious biases 
steeringgenerative capabilities toward deception. Fine-tuned 
trojans may transfer across mediums topropagate influence 
campaigns. 

For code injection attacks, adversaries may illegally modify 
update code to implant stealthy backdoors or malware aimed 
at controlling model outputs to disseminate misleading or 
manipulated information distorting public views. The studies 
studied code injection attacks in memory for malware [120] 
and in IoT devices [121], respectively. In parameter stealing 
attacks, extracting internal parameters from updates could 
leak privacy knowledge or build sophisticated impersonation 
models based on reconstructing personal details for targeted 
influence operations. Oliynyk et al.(2023) [122] provided a 
taxonomy for model stealing attacks and proposed catego- 
rizing different types of attacks based on goals. Edge node 
intrusion enables unauthorized access to models deployed on 
edge devices, allowing outputs to be manipulated or data to 
be leaked at scale. Yang et al.(2023) [124] studied efficient 
intrusion detection using cloud-edge collaboration to improve 
performance. 

By cracking update mechanisms via vulnerabilities like 
auto-update flaws, attackers could broadly distribute fake 
news or disruptive content to sway discussions. Shourya 
et al.(2023) [125] investigated dictionary attacks, where an 
attacker tries to determine account credentials by cycling 
through a list of common values. Huang et al.(2024) [126] 
proposed a Composite Backdoor Attack (CBA) against LLMs. 
Unlike repeating trigger keys in a single component, CBA scat- 
ters triggers across components. He et al.(2024) [127] studied 
transferability of backdoors across languages and confirmed 
that with instruction tuning, backdoors transfer successfully 
from the source to target languages, deceiving models. 

The development of AI also risks ideological fractures, ma- 
nipulation, and destabilization. Applications involving LLM, 
particularly conversational systems like ChatGPT and Codex, 
could propagate harmful societal biases at scale. While as- 
sisting legal professionals with reviewing documents, drafting 

legal texts, and participating in proceedings, AI integration in 
the legal sphere introduces novel security vulnerabilities and 
ethical dilemmas. Several avenues exist for adversarially influ- 
encing ideological stances, including by selectively training on 
biased data, inducing membership inferences about sensitive 
attributes, and surreptitiously injecting malicious payloads. 
Defenses against such ideological threats require addressing 
data selection, model architectures, and what information 
models externally retrieve. 

 
B. Social engineering attack scenarios 

After analyzing SE attack tactics, Fig. 5 outlines research 
trends related to evolving social engineering attack scenarios. 
There are three scenarios mainly discussed in this paper: 
financial, plitical and medical scenarios. Firstly, in economics, 
focus has diverged from asset pricing towards tactics surrep- 
titiously shaping public discourse and subverting systems to 
indirectly steer socio-ecological conditions on a macro scale. 
Secondly, for healthcare system, concerns surrounding privacy 
leakage have broadened to encompass pressing issues of bias, 
unfairness and the need for redress mechanisms owing to per- 
sonalized decision support integrated into human judgements 
at massive scales. Finally, within political applications, atten- 
tion is pivoting from narrow technical considerations towards 
holistic policy frameworks sensitive to novel computational 
propaganda vectors. These research trajectories highlight the 
nascent, transdisciplinary nature of comprehending and pre- 
empting escalating socio-technical risks introduced by the 
digital transformation of society. 

 

 
Fig. 5. Research trends related to evolving social engineering attack in 
different scenarios. 

 

1) Financial scenarios: SE attacks in financial contexts 
primarily include rumor attacks, privacy leaks, and subverting 
control of financial systems. Prior studies have shown that 
rumors can influence asset prices in capital markets [136]. 
Some research found that rumors may cause temporary stock 
price overreactions and mispricing especially during atypical 
periods such as bear markets [137]. Social media platforms 
have become major channels for rumor propagation. Studies 
found that artificial accounts powered by AI techniques on 
social networks can effectively spread rumors and manipulate 
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public opinions similar to authentic users [138], potentially 
impacting financial markets. 

Unlike traditional rumors, AI-powered social engineering 
attacks are more difficult to identify and control as the 
generated content cannot be distinguished from reality [139]. 
This may exacerbate uncertainties among market participants 
and lead to more adverse consequences. In addition, the 
diversified media landscape poses challenges for monitoring 
and fact-checking rumors in a timely manner. Existing re- 
search shows media coverage itself could potentially fuel 
rumor transmission [140], [141], which may similarly exist in 
financial context. Importantly, rumors are prone to influencing 
individual behaviors and decisions, hence affecting broader 
domains. Some findings suggest that rumors can trigger herd 
panic sentiments [142], negatively impacting not only financial 
markets but the entire economy. 

On privacy leaks, attackers utilize deep learning to analyze 
online banking transaction records and excavate users’ privacy- 
sensitive information for illegal use [141]. Attackers may also 
collect a large amount of user data, using GAN to generate 
fake user profiles for infiltration in transaction systems to steal 
real user data. It could even lead to large-scale blackmail 
scams. Attackers collect information from social media or 
large personal datasets [143](e.g. email logs, browsing histo- 
ries, hard disks or phone contents), which do not necessarily 
constitute curse evidence, and then identify many potential 
targets’ specific vulnerabilities customized with threatening 
messages. 

Moreover, with the development of AI technologies, AI- 
driven SE attacks that subvert control of financial systems 
could emerge. In general, the more complex the supervised 
system for financial transactions, the more difficult it is to 
defend fully. Adversarial disturbance phenomena highlight 
this issue, indicating sufficiently advanced AI may inherently 
facilitate carefully designed attacks. 

2) Medical scenarios: The application of AI technology in 
the medical field has made significant progress, including but 
not limited to clinical diagnosis, medical treatment, medical 
rehabilitation, disease prediction, and medical research. These 
applications not only improve the efficiency and quality of 
medical services but also alleviate the workload of medical 
staff[144], [145]. However, with the rapid development and 
widespread application of AI technology, AI-driven SE attacks 
have also brought a series of risks and challenges in the 
medical field. 

The main AI-driven SE attacks in the medical field include: 
misdiagnosis and inappropriate treatment caused by decision- 
making errors due to large model hallucinations in AI-assisted 
decision-making systems, data security and privacy breaches, 
AI model biases leading to misleading decision support and 
cybersecurity attacks causing decision-making failures. 

If the training data is biased, the LLM system may pro- 
duce misleading decision support, leading to misdiagnosis or 
inappropriate treatment. AI systems built on large amounts 
of medical data also face the risk of information leakage and 
misleading decisions.The study [146] discusses the privacy and 
security challenges of generative AI in medical practice from 
an end-to-end perspective. It analyzes the privacy and security 

threats that may arise in data collection, model training, 
and implementation phases, and proposes corresponding risk 
management recommendations. 

In terms of cybersecurity, the application of AI technology 
in the medical field may also bring security risks, including 
cyber attacks and data breaches. Since AI systems often rely 
on large amounts of patient data for learning and predic- 
tion, they may become targets of cyber attacks, threatening 
patient privacy and safety. He et al.(2020) [147] studies the 
AI security attack pathways for cardiac medical diagnosis 
systems and points out the redirection attacks, man-in-the- 
middle attacks, and endpoint attacks these systems may face. 
Rahman et al.(2020) [148]discusses the risks of adversarial 
example attacks on COVID-19 deep learning systems and 
notes that such attacks could impact the security of medical 
Internet of Things devices. Gongye et al.(2020) [149] identifies 
passive and active attacks on deep neural networks in medical 
applications, including adversarial training attacks, data replay 
attacks, and model extraction attacks, and conducts empirical 
validation. Tag et al.(2023) [150] studies the adversarial de- 
cision blocking attacks human-AI teams may face in medical 
decision-making scenarios and indicates these attacks could 
influence AI-assisted medical judgments. 

Additionally, the transparency and interpretability issues of 
AI systems may make it difficult for doctors and patients 
to understand and trust the decision-making process of these 
systems. From a legal and ethical perspective, the application 
of AI technology in the medical field also faces risks, including 
the unclear legal status of medical AI, disputes over liability 
attribution, and ethical challenges related to patient privacy 
protection, medical safety, and responsibility allocation. 

3) Political scenarios: Several studies have explored the 
role of AI in shaping electoral politics and democratic pro- 
cesses. Yu (2024) [151]examined how AI could potentially 
steal elections through manipulation of social media and 
voting systems. Klein (2024) [152] discussed the impact of 
AI-driven social media on voter autonomy and government. 
Schippers(2020) [153] provided an overview of the impli- 
cations of artificial intelligence for democratic politics. Ka- 
mal et al.(2024) [154] investigated how AI-powered political 
advertising could harness data-driven insights for campaign 
strategies. Filgueiras (2022) [155] analyzed the politics of 
AI in developing countries in relation to democracy and 
authoritarianism. Tomar et al.(2024) [156] studied the role 
of AI tools in influencing Indian elections and social me- 
dia dynamics. Jungherr (2023) [157] proposed a conceptual 
framework for understanding the relationship between artificial 
intelligence and democracy. Starke and Lu¨nich (2020) [158] 
analyzed the effects of AI on citizens’ perceptions of political 
legitimacy in the EU. Several papers also discussed broader 
topics such as the transformative role of AI in reshaping 
electoral politics [159] and the impact of financial crises on 
elections [160]. In summary, this body of research has begun 
to uncover both opportunities and risks associated with the 
growing role of advanced technologies in modern political 
systems and campaigning. 

The research focus of SE attacks in political contexts has 
evolved from technical to policy aspects, with more attention 
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paid to how AI may impact democratic political structures 
and citizens’ participation levels. Emerging research directions 
primarily concern the manipulation of public opinion environ- 
ments and voter preferences through social media influence 
operations, and applications in developing countries and dif- 
ferent regimes, exploring the distinct socio-political impacts 
of technologies under democratic and authoritarian systems. 
Future research needs to examine how AI-driven SE attacks 
may influence the evolution of political ecosystems. 

 
IV. CHALLENGES AND PROSPECTS 

Based on our comprehensive review of the evolu- 
tion of AI-powered SE attack methods through the 3E 
phases(enlargement, enrichment and emergence), as well as 
the analysis of research trends and gaps discussed in prior 
sections, we now explore current challenges and future per- 
spectives. These emerging research avenues provide a deeper 
understanding of complex issues in SE defense while ad- 
dressing recent challenges and promoting comprehensive, in- 
depth progress. Building on prior analyses, we aim to facilitate 
deeper understanding of evolving AI risks and corresponding 
defense strategies. 

 
A. Challenges 

As AI and its potential misuse rapidly evolve, the research 
community faces several key challenges in addressing grow- 
ing threats from AI-powered SE attacks. Overcoming these 
requires multifaceted, proactive efforts ensuring AI system and 
application security and resilience. 

The first challenge concerns tracking and analyzing the 
rapidly changing AI-enabled SE attack landscape. Given AI’s 
ongoing evolution, maintaining awareness of latest develop- 
ments and impacts on social engineering poses difficulty. 
Second, developing a robust framework encompassing LLM’s 
transformative role in SE attacks remains pertinent. While the 
work by Alahmed et al. (2024) [161] provides a conceptual 
model focused on LLM, there is a need to explore other 
aspects of AI that can be misused in SE attacks, beyond 
just content generation. Third, proactive, adaptive detection 
and defense strategies must pace the evolving SE attack 
threatscape. With the rapid evolution of AI-enabled SE at- 
tacks, there is a need to develop detection and mitigation 
strategies that are proactive, adaptive, and can keep pace with 
the changing threat landscape. Finally, ethical and privacy 
implications raised through AI-enabled SE attacks necessitate 

impact assessments of how AI shapes emerging forms and 
trends of SE attacks under different sociotechnical settings 
and application scenarios, 2) enabling forensic traceability 
of factors that exacerbate social risks, and 3) prioritizing 
mitigation measures in a principled manner. 

Previous work in related domains provides a starting point. 
For instance, Markov decision process frameworks have been 
applied to autonomous vehicle safety verification [162]. Causal 
Bayesian networks have also been used to establish risk 
profiles for AI systems and analyze different risk dimen- 
sions [163]. Moreover, state space models have formed the 
basis of frameworks for assessing AI system robustness and 
explainability [164]. 

This study aims to develop a standardized risk quantification 
framework based on Markov decision process (MDP) for AI- 
powered SE attacks as a foundation for comparative impact 
evaluations, forensic traceability of sociotechnical factors, and 
prioritization of mitigation measures. The framework could 
augment SE attack propagation dynamics and causally in- 
fluence downstream social impacts over time. This involves 
leveraging big data to track changes in key risk metrics like 
spreading capability and penetration efficiency under different 
conditions. 

a) Problem Definition: The SE attack in social system 
can be modeled as a Markov decision process. For each 
attack action, the policy πi is made based on the current 
system state si and observation oi, in order to maximize 
the long-term reward or satisfy a specific objective. These 
decisions include the attack actions. Additionally, the social 
network relationships in the system also influence the risk 
state transitions P (s′|s, a) and the reward structure Ri(s, a), 
resulting in a complex dynamic system. 

For the social system, the Markov decision process can be 
represented as MDP = (S, A, P, R, O, Γ, Π), where: 

• S is the set of state space, which represents the possible 
configurations of the social system. 

• A is the set of action space. The attack action a can be 
a specific social engineering technique, such as sending 
phishing emails or creating fake websites. 

• P represents the state transition probability, which cap- 
tures the dynamics of the social system. Given the set of 
target states St = {s1, s2, . . . , sN } and the set of actions 
At = {a1, a2, . . . , aN }, the probability of the target i 
transitioning from si to si is P (si |si, ai). The state 
transition probability for the entire system is: 

P (St+1|St, At) = 
Y 

P (si |si, ai) (1) 
careful consideration within research agendas. Unaddressed, 
such concerns endanger populations and trust in AI progress. i∈T 

t+1  t t 

 
B. Future direction 

1) Quantitative risk assessment of AI-powered SE attacks: 

With advances in AI technologies, it has become impera- 
tive to rigorously evaluate their broader impacts on society 
through augmented social engineering attacks. A direction for 
future research is developing a standardized risk quantification 
framework for AI-empowered SE attacks. Such a framework 
could serve as a foundation for: 1) conducting comparative 

• R : S × A → R is the reward function, which maps 
state-action pairs to real-valued rewards received by the 
attacker. This models the objectives of the SE attack. 

• O is the observation space set, denoting the possible 
observations the attacker can receive about the current 
state of the social system. 

• Γ is the discount factor, which represents the discounting 
rate of future rewards. 

• Π the set of possible policies, which are mappings from 
states and observations to attack actions. 
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b) Metrics for measuring the risk of SE attacks: 

Spreading capability Let us define the random variable 
S = (S1, S2, . . . , SN ) to represent the system state, where Si 
denotes the infection state of user i, and its value can range 
from 0 to dmax. 

The system state distribution is defined as P (S = s) = 
P (S1 = s1, S2 = s2, . . . , SN = sN ), which represents the 
probability of the system being in state s = (s1, s2, . . . , sN ). 

The entropy of the system state is defined as: 

H(S) = − 
Σ 

P (S = s) log P (S = s) (2) 
s 

The entropy reflects the uncertainty of the system state, 
and a higher entropy indicates a more uniform distribution 
of the system states, suggesting a broader spread of the attack 
propagation. 

Furthermore, we can define the Kullback-Leibler (KL) di- 
vergence to quantify the change in the system state distribu- 
tion: 

effectiveness of defense strategies and prioritize improvements 
to security capabilities. 

2) Defense techniques against AI-powered SE attack: 

Addressing AI-empowered social engineering attacks will ben- 
efit from rigorous investigation into robust, multidimensional 
defensive strategies. Promising research directions involve 
developing detection systems capable of identifying and miti- 
gating malicious AI-generated content across various networks 
and platforms. Research can focus on developing efficient AI 
detection algorithms and establishing response mechanisms to 
cope with evolving SE attack threats [166], [167]. Table II 
outlines the technical measures to defend against SE attack 
risks, categorized from the perspectives of the attack targets 
and the AI life cycle stages. This table provides a comprehen- 
sive overview of the technical measures that can be employed 
to defend against SE attack risks from multiple perspectives. 

a) Attack targets: At the individual level, anonymization 
techniques like data perturbation and encryption can help 
protect privacy from personal data aggregation and profil- 
ing [168], as summarized in Table II. Personalized monitoring 

D (P |P ) = 
Σ 

P (s) log 
P1(s) 

(3) tools that identify anomalous behaviors may also help com- 
KL 1  0 1 

s P0(s) pensate for technical limitations [169]. At the organization 

where P0 and P1 represent the system state distributions 
before and after the attack, respectively. 

β = DKL(P1|P0) − DB (4) 

where DB is the baseline referring to the natural change 
of state distribution over time if no attack occurs. A larger 
spreading capability β indicates a more significant change in 
the system state distribution due to the attack. 

Penetration efficiency The penetration efficiency η repre- 
sents the ability of the attacker to maximize the impact of the 
attack per unit of their own resources [165]. It can be defined 
as the ratio of the expected reward obtained from a successful 
attack to the cost incurred by the attacker: 

E[R(st+1, ai)|si, ai] 

level, computational models can analyze sentiment trends 
and flag deceptive narratives spread through social media. 
Content filtering algorithms can timely recognize and address 
misinformation propagation [170], [171]. Cross-validation of 
information from multiple sources through aggregation and 
fusion supports coordinated responses across groups [172]. 
At the community level, recommendation diversification and 
alternative information platforms aim to prevent echo cham- 
bers and support balanced views [173]. Participatory digital 
governance empowers communities for self-organized de- 
fense [174]. Continued advancement across these technical 
defensive layers is needed to reinforce system integrity and 
user trust against increasingly sophisticated AI-driven attacks. 

b) Risk defense across the AI lifecycle: Comprehensively 
defending against AI-powered SE attacks requires constructing 

η = t t t (5) layered security that spans the full AI development lifecycle. 
E[C(ai)|si, ai] 

t t t 

where R(st+1, ai) is the reward function that represents the 
benefit obtained from the attack, and C(ai) is the cost function 
that represents the resources consumed by the attacker. 

The numerator, E[R(st+1, ai)|si, ai], represents the ex- 

Defense techniques against known threats include adversarial 
training, network distillation, adversarial sample detection, 
deep neural network(DNN) verification, data filtering, in- 
tegrated analysis, pruning, and differentially-private teacher 
models. Federated learning updates models while protecting 

t t t 

pected reward obtained from a successful attack, given that the 
attacker takes the action ai. The denominator, E[C(ai)|si, ai], 

privacy and harnessing distributed computation against cen- 
tralization abuse. Another important direction is adversarial 

t t t t 

represents the expected cost incurred by the attacker for taking 
the action ai . 

The penetration efficiency η is a measure of the attacker’s 
ability to maximize the impact of the attack per unit of 
their own resources. A higher penetration efficiency indicates 
that the attacker can achieve a greater impact with fewer 
resources, which can be an important factor in the evaluation 
and optimization of attack strategies. 

These indicators reflect the capability level of social en- 
gineering attacks from different dimensions. Defining these 
metrics helps to quantitatively assess the risk levels of dif- 
ferent attack methods, detect weak points in each link of the 
attack chain and design targeted defenses and evaluate the 

training, as demonstrated by the ALUM method proposed in 
[175]. ALUM applies perturbations in the embedding space to 
regularize the training objective, achieving gains in both gener- 
alization and robustness for large language models. Staliunaite 
et al.(2021) [176] showed that combining adversarial training 
and data augmentation can enhance the performance of com- 
monsense causal reasoning models. Knowledge distillation has 
emerged as an effective approach for model compression and 
transfer) [177]. Going further, Padmanabhan et al. (2024) [178] 
presented a distillation-based method that not only injects 
entity knowledge but also propagates it to enable broader 
inferences. Differential privacy has been recognized as a 
crucial technique for preserving the privacy of training data 
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in NLP models [179]. The survey [180] further discusses the 
recent advances and future directions of differentially private 
NLP models. 

Model security faces adversarially transferred vulnerabilities 

TABLE II 
SE ATTACK DEFENSE METHOD. 

 

Defense Categories Technique Reference 
Individuals Data perturbation and encryption  [168] 

requiring enhanced detectability, verifiability and explainabil- 
ity against unconceived threats. In terms of detectability, 

 
Attack 

Organizational 
Entities 

Computational propaganda models [170] 
Content detection [171] 

researchers have proposed techniques such as watermarking 
to embed detectable signals in model outputs, which can help 
identify their use for SE attacks, e.g., detecting maliciously 
generated content like disinformation or explicit material, to 

targets 
 

Community 
Groups 

Multi-source data aggregation and 
fusion 
Diverse information platforms and 
recommendation 
Digital civic participation and gov- 

[172] 

[173] 

[174] 

prevent model misuse. On verifiability, traceable information 
 ernance  

Adversarial training [175] 

flows verify content accuracy by external corroboration, en- 
hancing trustworthiness. Improving model explainability can 
also enhance user understanding of model behavior and out- 
puts, increasing trust and acceptance. Better diagnosis and 
correction of model errors or biases can also enhance model 
security. 

In the area of detectability, the HuntGPT system [181] 
utilizes a random forest classifier and an XAI [182]framework 
to detect and explain network anomalies using large language 
models (LLMs). Additionally, the ”Data-to-Paper” automated 
platform [183] provides programmable traceability, and the 

 

 
Risk 
defense 
across 
the AI 
lifecycle 

Attack-defense 
techniques 

 

 
Model security 

 

 
Architectural 
security 

Data augmentation [176] 
Knowledge distillation [177] 
Distillation-based method [178] 
Differential privacy [179] 
Detectability-watermarking [186] 
Verifiabilitythe -”Quote-Tuning” [184] 
method 
Explainability [182] 
Structured interactions [188] 
Isolation architecture [189] 
Detection [190] 
Circuit-breaking and redundancy [191] 

”Quote-Tuning” method [184] employs LLMs to verify gener- 
ated content through verbatim referencing. For explainability, 
the integration of LLMs with decision models [185]and the 
translation of AI algorithm explanations into natural language 
can improve the interpretability and usability of AI. Fur- 
thermore, research on LLM watermarking has proposed the 
”WaterMax” scheme [186] and the open-source ”MarkLLM” 
toolkit [187] to balance watermark detectability, robustness, 
and generation quality. 

Regarding architectural security, it is crucial to defense the 
potential security risks introduced by AI systems by compre- 
hensively utilizing isolation, detection, circuit breaking, and 
redundancy mechanisms to enhance the robustness of business 
products. The emerging paradigm of structured interactions 
limits the way users interact with LLM systems [188], pre- 
venting the widespread use of dangerous functionalities while 
preserving secure utilization. SecGPT [189]is an execution 
isolation architecture that isolates the execution of LLM-based 
applications and precisely mediates their interactions outside 
the isolated environment, mitigating security and privacy risks. 
ShieldLM [190] utilizes LLM as an aligned, customizable, 
and interpretable security detector to enhance the security 
and reliability of LLM systems. The deployment correction 
[191] proposes an incident response framework for identifying 
and rectifying potential issues that may arise during the 
deployment of advanced AI models. The safety case [192] 
provides a structured approach to demonstrating the safety 
of advanced AI systems, considering arguments such as the 
inability to cause catastrophe, robust control measures, and 
trustworthiness. The critical infrastructure protection [193]ex- 
plores methods to leverage LLM to enhance the security 
and resilience of critical national infrastructure, addressing 
challenges related to trust, privacy, and security. 

3) Ethical and legal efforts in AI application environments: 

Given the potential for societal harms from AI-enabled social 
engineering attacks, further work could examine associated 

ethical and legal considerations. Research is needed to estab- 
lish frameworks for responsible AI integration into networked 
human systems and accountability of developers. Normative 
constraints on AI-facilitated social manipulation should also 
be explored within legal and regulatory contexts. 

Clear allocation of responsibilities across AI system life- 
cycles from data curation to deployment is imperative for 
effective governance. Simulation-based modeling of complete 
development pipelines allows assessing accountability at each 
stage and comparing effects of oversight approaches. Such 
computational analyses could evaluate mitigation strategies for 
AI-driven social threats under different legislative regimes. 

Continued methodological advancement is required, such as 
algorithmic auditing, impact assessments within virtual envi- 
ronments, and mechanisms for establishing AI’s legal duties 
and accountability for potential harms. Perception modules 
in simulators should identify adverse societal outcomes to 
guide responsible innovation. Considering AI augmentation 
from enforcement perspectives regarding defined legal status 
facilitates addressing issues of redress for threats posed by 
emergent attack vectors. Ongoing multidisciplinary work is 
needed to embed ethical safeguards and accountability as the 
interface between human and artificial social actors grows in 
scope and complexity. 

 
V. CONCLUSION 

The study delineated the 3E progression of AI-powered 
social engineering attacks, encompassing Enlarging reach 
via digitization, Enriching tailored vectors, and the possible 
Emergence of innovative deception modes employing LLM. 
Existing SE approaches were classified into technological eras, 
with representative cases discussed to illustrate impacts. 

Several key challenges in the field were identified, includ- 
ing the difficulty of systematically tracking shifting attack 
paradigms, developing a robust framework encompassing AI 
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risk, and ensuring defenses remain adaptive to attack methods. 
A Markov decision process based framework was proposed to 
facilitate quantitative risk assessment. To address limitations 
in prior work, this study consolidated extant technical investi- 
gations while proposing framework to systematically address 
quantitative risk assessment. Specifically, we compared under- 
lying exploitation methods, outlined implementation character- 
istics, and analyzed threat progression. 

Future directions were also highlighted emphasizing the 
importance of quantitative risk assessment of AI-powered SE 
attacks, developing defense techniques against AI-powered SE 
attack and efforts spanning both technical and policy domains. 
Multifaceted research is required to curb foreseeable exploits 
preemptively through vigilant monitoring, evidence-based pol- 
icymaking, and comprehensive stakeholder engagement. 

We hope our thorough investigation into the evolving land- 
scape of social engineering attacks in the context of artificial 
intelligence, offering valuable insights and charting future 
research directions. 
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