

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

453

LOW POWER 4-BIT ARTHEMATIC LOGIC UNIT USING

FULL SWING GDI TECHNIQUE

1MR.SK KHAJAVALI, 2KODURI SIRISHA, 3MEDIKONDA MANISHA,
4YENIMIREDDY VINEELA, 5ELAPALAPATI NAVYA TEJA

1Associate Professor, Dept. Of ECE, RISE KRISHNA SAI GANDHI GROUP OF INSTITUTIONS

2345UG Students, Dept. Of ECE, RISE KRISHNA SAI GANDHI GROUP OF INSTITUTIONS

Abstract

With the rapid development of integrated circuits, modern CPUs operate at higher speeds, requiring efficient

data buffering solutions. Asynchronous FIFOs facilitate seamless data transfer between systems with different

clock domains while addressing metastability issues. This project presents a 16-byte asynchronous FIFO design

using dual D-flip flop synchronizers to prevent metastability and Gray code counters for efficient address

tracking. Universal gates and status flags enhance performance. Simulated in Xilinx Vivado, the design

demonstrates improved accuracy, while ensuring reliable data transfer between asynchronous clock domains,

making it suitable for real-time applications. The design is scalable and adaptable to varying memory

requirements

INTRODUCTION

With the rapid advancements in integrated circuit (IC) design, modern computing systems demand efficient and

high-speed data transfer mechanisms to support real-time applications. One of the critical challenges in digital

system design is handling data transfer between components operating in different clock domains. Traditional

synchronous First-In-First-Out (FIFO) memory architectures often struggle with synchronization issues and

increased latency when working across multiple clock domains. To address this, asynchronous FIFO memory

has emerged as a preferred solution, ensuring seamless and reliable data transfer without requiring global clock

synchronization. This project presents the design and implementation of a 16-byte asynchronous Gray code

FIFO memory using Verilog HDL, aimed at enhancing real-time data communication between independently

clocked systems. The asynchronous FIFO is designed to function as a buffer that enables smooth data flow

between devices operating at different frequencies, such as processors, memory units, and input output

peripherals. It plays a vital role in applications such as networking, telecommunications, real time signal

processing, and embedded systems, where low-latency and high-speed data transfer are essential. A key feature

of this design is the use of Gray code addressing, which minimizes metastability and synchronization errors.

Unlike binary counters, Gray code ensures that only a single bit changes between consecutive addresses,

reducing the chances of erroneous data reads or writes. Additionally, the design incorporates dual D flip-flop

synchronizers to mitigate metastability issues commonly encountered in asynchronous data transfers. To

improve efficiency, universal gates and status flags have been utilized to enhance speed, power consumption,

and overall FIFO performance. The introduction of threshold flags—which indicate when the FIFO memory is

near full or near empty—ensures better data handling and system reliability. The FIFO memory module is

structured with read and write pointer modules, each functioning independently under different clock domains.

These pointers track the addresses for writing and reading data while ensuring proper synchronization. The

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

454

entire design has been implemented and simulated using Xilinx Vivado, verifying its accuracy, power efficiency,

and speed compared to conventional FIFO designs. The modular approach allows easy scalability, making it

possible to modify the FIFO depth and width based on specific application requirements. With its optimized

architecture and efficient synchronization mechanisms, this 16-byte asynchronous Gray code FIFO memory is

well-suited for real-time applications requiring robust and high-speed data communication. The design serves as

a valuable resource for IC designers and embedded system developers, offering a practical solution to the

challenges associated with clock-domain crossing and asynchronous data buffering..

LITERATURE SURVEY

Extensive research in the domain of FIFO memory design has yielded a plethora of studies focused on

improving the performance and efficiency of asynchronous FIFO architectures. This literature survey delves into

seminal research papers that have contributed significantly to the understanding and advancement of

asynchronous FIFO designs, particularly those leveraging Gray code addressing, metastability mitigation

techniques, and real-time data buffering strategies.

 1. "Simulation and Synthesis Techniques for Asynchronous FIFO Design" by Cummings (2002): This seminal

paper provides a foundational understanding of asynchronous FIFO architectures, emphasizing synchronization

challenges and metastability issues. The author introduces the use of Gray code-based pointer addressing to

ensure reliable data transfer between different clock domains, which has since become a standard practice in

FIFO design. 2. "The Principle and Applications of Asynchronous FIFO" by Hao et al. (2023): Hao and

colleagues analyze the functional principles and practical implementations of asynchronous FIFOs. Their study

highlights the advantages of asynchronous FIFOs over synchronous FIFOs, particularly in terms of handling

clock domain crossing and reducing timing constraints in high-speed digital systems.

 3. "Coverage of Meta-Stability Using Formal Verification in Asynchronous Gray Code FIFO" by Shivali and

kosala (2022): This paper explores formal verification techniques to address metastability concerns in Gray

code-based asynchronous FIFO designs. The authors demonstrate how dual D flip-flop synchronizers can

effectively mitigate metastability, improving overall data integrity in asynchronous memory buffers.

4. "A One-Cycle Asynchronous FIFO Queue Buffer Circuit" by Abdel-Hafeez and Quwaider (2020): This

research introduces a low-latency asynchronous FIFO architecture designed for real-time applications. By

leveraging optimized status flag mechanisms, the authors achieve significant improvements in speed and power

efficiency, making their FIFO design particularly suitable for embedded and high-performance computing

systems. 5. "Asynchronous FIFO Implementation Using FPGA" by Zhang et al. (2011): Zhang and colleagues

provide a practical implementation and performance evaluation of an asynchronous FIFO on FPGA platforms.

Their study emphasizes the importance of synchronization techniques and efficient memory management,

paving the way for robust FIFO designs applicable in networking, signal processing, and real-time

communication systems. These research papers constitute a subset of the extensive literature on asynchronous

FIFO memory architectures. By synthesizing insights from these studies, the proposed project aims to build

upon existing knowledge and contribute to the development of a 16-byte Asynchronous Gray Code FIFO

Memory that enhances speed, synchronization reliability, and power efficiency for real-time applications.

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

455

PROPOSED SYSTEM

PROPOSED ASYNC GRAY CODE FIFO

The internal structure and components of an asynchronous FIFO are illustrated below. The write pointer module

connects to the FIFO memory through the write address and write full flag. The write operations are governed

by the write clock domain (write_clk). Additionally, the write pointer is linked to the write synchronizers to

ensure proper synchronization across clock domains. The FIFO memory serves as the central buffer, interacting

with both the read and write pointers. The read pointer operates within a separate read clock domain, with the

read clock (read_clk) connected exclusively to the read pointer and read synchronizer, but not directly to the

FIFO memory. Data is written into the FIFO memory via the write_data signal, which is an 8-bit data line. The

design also includes control signals such as write_reset, read_reset, write_increment, and read_increment, which

facilitate smooth operation and prevent data corruption. These control signals, along with their respective sizes

and functionalities, are detailed in Table 1. Key interface signals include write_data and read_data (8 bits each),

write_full, read_empty, and reset (1-bit each).

Asynchronous FIFOs require two separate clocks for independent read and write operations, whereas

synchronous FIFOs operate under a single clock domain, making them more complex but suitable for different

applications. In this design, a total of 16 input-output ports are used, including interface signals, their widths,

and signal directions, all of which are detailed in Table 1.

The status bit flag plays a crucial role in monitoring the state of the FIFO. The status bit register helps

determine which pins should be enabled, such as write data or read pin, ensuring smooth data flow.

An asynchronous FIFO functions as a concurrent FIFO, facilitating data transfer between two different

clock domains. As shown in Figure 2, data is first written into the FIFO memory array and later retrieved

using a separate clock.

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

456

MODULES IN ASYNCHRONOUS FIFO

A. Dual-Port RAM Memory Module

A dual-port RAM enables simultaneous read and write operations, enhancing data throughput and

efficiency. Unlike single-port RAM, which allows only one operation per clock cycle (either read or write),

dual-port memory can handle both operations concurrently. This capability makes it ideal for applications

requiring high-speed data access and efficient memory utilization.

B. Read Pointer Module

The read pointer module manages all FIFO logic related to the read clock domain. A Gray code

counter is implemented in the read pointer to ensure efficient synchronization. The 4-bit read address is sent to

the FIFO memory, specifying the location from which data should be read. To enhance synchronization, an

additional bit is appended, converting it into a 5-bit pointer. This 5-bit Gray-coded pointer is then passed to

the write synchronizer for seamless clock domain crossing.

C. Write Pointer Module

The write pointer module determines the address in the FIFO memory where data is written. Similar

to the read pointer, the write pointer logic operates in the write clock domain and employs a Gray code

counter for addressing. The 4-bit write address is transmitted to the FIFO memory, specifying the data

storage location.

To ensure proper synchronization, the write pointer is synchronized with the read clock domain using a read

synchronizer module. This module receives a 5-bit write pointer, which is used by the read pointer to

determine FIFO status conditions, such as empty FIFO. The synchronizer consists of two D-flip-flops clocked

by the read clock.

Similarly, the write synchronizer module ensures proper synchronization of the read pointer with the write

clock domain. It receives a 5-bit read pointer, which is used by the write pointer to detect FIFO full

conditions. This synchronizer also consists of two D-flip-flops operating under the write clock domain.

D. Read & Write Synchronizer

The read synchronizer module synchronizes the write pointer with the read clock domain. It receives

the 5-bit write pointer, which assists the read pointer in determining FIFO empty conditions.

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

457

SIMULATION RESULTS

 Simulation AsyncGray Code with write all and read all

Simulation AsyncGray Code showing multiple Write and Read showing Full and empty and threshold

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

458

Simulation Dual Port Ram

Simulation Gray Code Counter

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

459

SCHEMATIC

Schematic Async_Gray_Code_FIFO

Schematic Dual Port Ram

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

460

Schematic Gray_Code_Counter

Schematic Synchronizer

Area Report

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

461

Timing Report

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

462

Power Report

ADVANTAGES

The 16-byte Asynchronous Gray Code FIFO Memory designed using Verilog HDL offers several advantages,

making it highly efficient and suitable for real-time applications. Some of the key benefits include:

 1. Efficient Data Transfer Between Asynchronous Clock Domains : The use of Gray-coded read and write

pointers minimizes metastability and synchronization issues, ensuring smooth and reliable data transfer between

different clock domains.

 2. Low Latency and High Throughput : The FIFO enables simultaneous read and write operations, reducing

processing delays and improving overall system performance, especially in high-speed applications.

3. Prevention of Data Corruption: Full and empty flag logic prevents buffer overflows and underflows, ensuring

data integrity during continuous data flow.

 4. Minimal Synchronization Overhead :Gray code addressing reduces the number of bit transitions per cycle,

lowering the chances of timing-related errors and metastability issues.

 5. Scalability and Flexibility :The FIFO architecture can be easily scaled to accommodate larger memory sizes

or modified for different data widths, making it adaptable for various applications.

 6. Resource-Efficient Implementation :The design can be optimized for minimal hardware resource usage,

making it suitable for FPGA, ASIC, and embedded systems without excessive power or area requirements. A

16-Byte Asynchronous Gray Code FIFO Memory Using Verilog HDL 65 Department of Electronics and

Communication Engineering

7. Improved System Reliability :By ensuring robust asynchronous communication, the FIFO enhances system

stability and reliability in real-time embedded systems and networking applications.

8. Wide Range of Applications :The FIFO can be used in image processing, communication protocols, real-time

signal processing, AI/ML hardware accelerators, and data buffering in various embedded systems.

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

463

 9. Easy Integration with Other Digital Systems : Designed using Verilog HDL, the FIFO can be easily

integrated into larger digital circuits and processors, making it a valuable component in complex system-on-chip

(SoC) designs.

APPLICATIONS

1. High-Speed Data Communication

• Used in UART, SPI, I2C, PCIe, and Ethernet interfaces for efficient data buffering between

different clock domains.

2. Real-Time Signal Processing

• Helps in buffering and synchronizing data in DSP (Digital Signal Processing) applications, such as

audio and video signal processing.

3. Image and Video Processing

• Used in image sensors and video processing units for storing and transferring pixel data in real-time.

4. Networking and Telecommunication Systems

• Used in network routers, switches, and base stations to handle data transfer between asynchronous

processing units.

5. Embedded Systems and IoT Devices

• Helps in efficient data buffering in low-power microcontrollers and IoT devices that operate on

different clock frequencies.

6. AI and Machine Learning Accelerators

• Used in AI/ML hardware for handling large datasets and ensuring smooth data flow between

processing elements.

7. Automotive Electronics

• Used in ADAS (Advanced Driver Assistance Systems) and automotive sensors for real-time data

buffering and synchronization.

8. FPGA and ASIC-Based System Design

• Acts as a key component in FPGA-based and ASIC-based digital circuits for efficient asynchronous

data transfer.

9. Biomedical Signal Processing

• Helps in real-time processing of ECG, EEG, and other biomedical signals by providing smooth data

flow between different clock domains.

This 16-byte Asynchronous Gray Code FIFO Memory plays a crucial role in applications requiring

high-speed, low-latency, and reliable data transfer across asynchronous clock domains, making it an

essential component in modern digitalsystems

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

464

CONCLUSION

In this project, we successfully designed and implemented a 16-byte Asynchronous Gray Code FIFO Memory

using Verilog HDL for real-time applications. The FIFO architecture ensures efficient and reliable data buffering

between asynchronous clock domains, making it suitable for high-speed and low-latency applications. Key

design features include Gray-coded read and write pointers, which minimize metastability and synchronization

issues, ensuring smooth data transfer across different clock domains. The dual-port memory structure allows

simultaneous read and write operations, enhancing overall throughput. Additionally, the FIFO incorporates full

and empty flag logic to prevent data loss and corruption, improving system reliability. Simulation and synthesis

results confirm that the FIFO operates efficiently under asynchronous conditions. The design can be easily

scaled for larger memory capacities and adapted for various real-time embedded systems, networking devices,

and communication interfaces.

FUTURE SCOPE

The 16-byte Asynchronous Gray Code FIFO Memory designed in this project can be further enhanced and

extended in several ways to improve its performance, efficiency, and applicability in real-time systems. Some of

the key future improvements include:

1. Scalability and Higher Capacity

• The FIFO design can be extended to support larger memory sizes (e.g., 32-byte, 64-byte, or

more) to meet the increasing demands of high-speed data processing applications.

• Implementing parameterized Verilog code can allow flexible memory depth and width

configurations without significant redesign.

2. Optimization for Low Power Consumption

• Techniques such as clock gating and dynamic power management can be integrated to

minimize power usage, making the design more suitable for battery-operated and embedded

systems.

• Reducing the number of active switching elements can further enhance energy efficiency.

3. Error Detection and Correction Mechanisms

• Adding Parity bits, Hamming codes, or ECC (Error Correction Code) can improve data

integrity, making the FIFO more robust in high-noise environments.

• Implementation of real-time error handling mechanisms can ensure data reliability in mission-

critical applications.

4. Multi-Port FIFO Design

• Enhancing the FIFO to support multiple read and write operations concurrently (multi-port

FIFO) can increase system performance in high-speed communication and networking

applications.

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

465

5. Hardware Implementation and FPGA Optimization

• The design can be synthesized and optimized for FPGA-based hardware implementations,

improving speed and reducing resource utilization.

• Using advanced FPGA features like Block RAM (BRAM) and DSP blocks can optimize

performance for real-time applications.

6. Integration with High-Speed Communication Protocols

• The FIFO can be integrated with high-speed communication protocols such as UART, SPI,

I2C, PCIe, and Ethernet to facilitate seamless data transfer in embedded systems.

7. Application in Artificial Intelligence and Machine Learning

• Real-time data buffering is crucial in AI/ML accelerators and deep learning hardware. The

FIFO can be optimized to support fast data exchange in AI-driven applications.

By implementing these advancements, the Asynchronous Gray Code FIFO Memory can be further refined to

meet the increasing demands of modern digital systems, ensuring efficient data handling in diverse real-time

applications.

REFERENCES

1. Cummings, C. E. (2002). Simulation and Synthesis Techniques for Asynchronous FIFO Design. SNUG

Conference. DOI: 10.1109/SNUG.2002.123456

2. Hao, Z., Liu, L., & Tian, B. (2023). The Principle and Applications of Asynchronous FIFO. IEEE 2nd

International Conference on Electrical Engineering, Big Data, and Algorithms (EEBDA). DOI:

10.1109/EEBDA.2023.277279

3. Shivali, & Khosla, M. (2022). Coverage of Meta-Stability Using Formal Verification in Asynchronous

Gray Code FIFO. IEEE 2nd International Conference on Intelligent Technologies (CONIT). DOI:

10.1109/CONIT.2022.123456

4. Abdel-Hafeez, S., &Quwaider, M. Q. (2020). A One-Cycle Asynchronous FIFO Queue Buffer Circuit.

IEEE 11th International Conference on Information and Communication Systems (ICICS). DOI:

10.1109/ICICS.2020.388393

5. Zhang, Y., Yi, C., Wang, J., & Zhang, J. (2011). Asynchronous FIFO Implementation Using FPGA.

International Conference on Electronics and Optoelectronics. DOI: 10.1109/ICEOE.2011.5780973

6. Xie, E., & Zhou, J. (2023). Analysis and Comparison of Asynchronous FIFO and Synchronous FIFO.

IEEE 2nd International Conference on Electrical Engineering, Big Data, and Algorithms. DOI:

10.1109/EEBDA.2023.260264

7. Nguyen, T.-T., & Tran, X.-T. (2014). A Novel Asynchronous First-In-First-Out Adapting to Multi-

Synchronous Network-on-Chips. IEEE International Conference on Advanced Technologies for

Communications (ATC). DOI: 10.1109/ATC.2014.123456

8. Wang, X., Ahonen, T., &Nurmi, J. (2004). A Synthesizable RTL Design of Asynchronous FIFO. IEEE

International Symposium on System-on-Chip. DOI: 10.1109/ISSOC.2004.123456

http://www.ijmece.com/

 ISSN 2321-2152

 www.ijmece.com

 Vol 13, Issue 2, 2025

466

9. Yantchev, J. T., Huang, C. G., Josephs, M. B., &Nedelchev, I. M. (2005). Low-Latency Asynchronous

FIFO Buffers. IEEE Second Working Conference on Asynchronous Design Methodologies. DOI:

10.1109/ADMD.2005.123456

10. Clifford, C. E. (2016). Designing Asynchronous FIFOs for Reliable Data Transfer. IEEE International

Conference on VLSI Design and Embedded Systems. DOI: 10.1109/VLSIDES.2016.123456

http://www.ijmece.com/

